Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-24x+16-8x^{2}=88+3x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
x^{2}-24x+16=88+3x^{2}
Combine 9x^{2} and -8x^{2} to get x^{2}.
x^{2}-24x+16-88=3x^{2}
Subtract 88 from both sides.
x^{2}-24x-72=3x^{2}
Subtract 88 from 16 to get -72.
x^{2}-24x-72-3x^{2}=0
Subtract 3x^{2} from both sides.
-2x^{2}-24x-72=0
Combine x^{2} and -3x^{2} to get -2x^{2}.
-x^{2}-12x-36=0
Divide both sides by 2.
a+b=-12 ab=-\left(-36\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-36. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-6 b=-6
The solution is the pair that gives sum -12.
\left(-x^{2}-6x\right)+\left(-6x-36\right)
Rewrite -x^{2}-12x-36 as \left(-x^{2}-6x\right)+\left(-6x-36\right).
x\left(-x-6\right)+6\left(-x-6\right)
Factor out x in the first and 6 in the second group.
\left(-x-6\right)\left(x+6\right)
Factor out common term -x-6 by using distributive property.
x=-6 x=-6
To find equation solutions, solve -x-6=0 and x+6=0.
9x^{2}-24x+16-8x^{2}=88+3x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
x^{2}-24x+16=88+3x^{2}
Combine 9x^{2} and -8x^{2} to get x^{2}.
x^{2}-24x+16-88=3x^{2}
Subtract 88 from both sides.
x^{2}-24x-72=3x^{2}
Subtract 88 from 16 to get -72.
x^{2}-24x-72-3x^{2}=0
Subtract 3x^{2} from both sides.
-2x^{2}-24x-72=0
Combine x^{2} and -3x^{2} to get -2x^{2}.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-2\right)\left(-72\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -24 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-2\right)\left(-72\right)}}{2\left(-2\right)}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+8\left(-72\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-24\right)±\sqrt{576-576}}{2\left(-2\right)}
Multiply 8 times -72.
x=\frac{-\left(-24\right)±\sqrt{0}}{2\left(-2\right)}
Add 576 to -576.
x=-\frac{-24}{2\left(-2\right)}
Take the square root of 0.
x=\frac{24}{2\left(-2\right)}
The opposite of -24 is 24.
x=\frac{24}{-4}
Multiply 2 times -2.
x=-6
Divide 24 by -4.
9x^{2}-24x+16-8x^{2}=88+3x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
x^{2}-24x+16=88+3x^{2}
Combine 9x^{2} and -8x^{2} to get x^{2}.
x^{2}-24x+16-3x^{2}=88
Subtract 3x^{2} from both sides.
-2x^{2}-24x+16=88
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-24x=88-16
Subtract 16 from both sides.
-2x^{2}-24x=72
Subtract 16 from 88 to get 72.
\frac{-2x^{2}-24x}{-2}=\frac{72}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{24}{-2}\right)x=\frac{72}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+12x=\frac{72}{-2}
Divide -24 by -2.
x^{2}+12x=-36
Divide 72 by -2.
x^{2}+12x+6^{2}=-36+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=-36+36
Square 6.
x^{2}+12x+36=0
Add -36 to 36.
\left(x+6\right)^{2}=0
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+6=0 x+6=0
Simplify.
x=-6 x=-6
Subtract 6 from both sides of the equation.
x=-6
The equation is now solved. Solutions are the same.