Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-18x+9=49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-3\right)^{2}.
9x^{2}-18x+9-49=0
Subtract 49 from both sides.
9x^{2}-18x-40=0
Subtract 49 from 9 to get -40.
a+b=-18 ab=9\left(-40\right)=-360
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-40. To find a and b, set up a system to be solved.
1,-360 2,-180 3,-120 4,-90 5,-72 6,-60 8,-45 9,-40 10,-36 12,-30 15,-24 18,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -360.
1-360=-359 2-180=-178 3-120=-117 4-90=-86 5-72=-67 6-60=-54 8-45=-37 9-40=-31 10-36=-26 12-30=-18 15-24=-9 18-20=-2
Calculate the sum for each pair.
a=-30 b=12
The solution is the pair that gives sum -18.
\left(9x^{2}-30x\right)+\left(12x-40\right)
Rewrite 9x^{2}-18x-40 as \left(9x^{2}-30x\right)+\left(12x-40\right).
3x\left(3x-10\right)+4\left(3x-10\right)
Factor out 3x in the first and 4 in the second group.
\left(3x-10\right)\left(3x+4\right)
Factor out common term 3x-10 by using distributive property.
x=\frac{10}{3} x=-\frac{4}{3}
To find equation solutions, solve 3x-10=0 and 3x+4=0.
9x^{2}-18x+9=49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-3\right)^{2}.
9x^{2}-18x+9-49=0
Subtract 49 from both sides.
9x^{2}-18x-40=0
Subtract 49 from 9 to get -40.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-40\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -18 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-40\right)}}{2\times 9}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-40\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-18\right)±\sqrt{324+1440}}{2\times 9}
Multiply -36 times -40.
x=\frac{-\left(-18\right)±\sqrt{1764}}{2\times 9}
Add 324 to 1440.
x=\frac{-\left(-18\right)±42}{2\times 9}
Take the square root of 1764.
x=\frac{18±42}{2\times 9}
The opposite of -18 is 18.
x=\frac{18±42}{18}
Multiply 2 times 9.
x=\frac{60}{18}
Now solve the equation x=\frac{18±42}{18} when ± is plus. Add 18 to 42.
x=\frac{10}{3}
Reduce the fraction \frac{60}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{24}{18}
Now solve the equation x=\frac{18±42}{18} when ± is minus. Subtract 42 from 18.
x=-\frac{4}{3}
Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
x=\frac{10}{3} x=-\frac{4}{3}
The equation is now solved.
9x^{2}-18x+9=49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-3\right)^{2}.
9x^{2}-18x=49-9
Subtract 9 from both sides.
9x^{2}-18x=40
Subtract 9 from 49 to get 40.
\frac{9x^{2}-18x}{9}=\frac{40}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{40}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-2x=\frac{40}{9}
Divide -18 by 9.
x^{2}-2x+1=\frac{40}{9}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{49}{9}
Add \frac{40}{9} to 1.
\left(x-1\right)^{2}=\frac{49}{9}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
x-1=\frac{7}{3} x-1=-\frac{7}{3}
Simplify.
x=\frac{10}{3} x=-\frac{4}{3}
Add 1 to both sides of the equation.