Solve for x
x=\sqrt{2}+\frac{2}{3}\approx 2.080880229
x=\frac{2}{3}-\sqrt{2}\approx -0.747546896
Graph
Share
Copied to clipboard
\left(3x-2\right)^{2}-18+18=18
Add 18 to both sides of the equation.
\left(3x-2\right)^{2}=18
Subtracting 18 from itself leaves 0.
3x-2=3\sqrt{2} 3x-2=-3\sqrt{2}
Take the square root of both sides of the equation.
3x-2-\left(-2\right)=3\sqrt{2}-\left(-2\right) 3x-2-\left(-2\right)=-3\sqrt{2}-\left(-2\right)
Add 2 to both sides of the equation.
3x=3\sqrt{2}-\left(-2\right) 3x=-3\sqrt{2}-\left(-2\right)
Subtracting -2 from itself leaves 0.
3x=3\sqrt{2}+2
Subtract -2 from 3\sqrt{2}.
3x=2-3\sqrt{2}
Subtract -2 from -3\sqrt{2}.
\frac{3x}{3}=\frac{3\sqrt{2}+2}{3} \frac{3x}{3}=\frac{2-3\sqrt{2}}{3}
Divide both sides by 3.
x=\frac{3\sqrt{2}+2}{3} x=\frac{2-3\sqrt{2}}{3}
Dividing by 3 undoes the multiplication by 3.
x=\sqrt{2}+\frac{2}{3}
Divide 3\sqrt{2}+2 by 3.
x=\frac{2}{3}-\sqrt{2}
Divide -3\sqrt{2}+2 by 3.
x=\sqrt{2}+\frac{2}{3} x=\frac{2}{3}-\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}