Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-17x+22=2
Use the distributive property to multiply 3x-11 by x-2 and combine like terms.
3x^{2}-17x+22-2=0
Subtract 2 from both sides.
3x^{2}-17x+20=0
Subtract 2 from 22 to get 20.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 20}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -17 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 20}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 20}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-240}}{2\times 3}
Multiply -12 times 20.
x=\frac{-\left(-17\right)±\sqrt{49}}{2\times 3}
Add 289 to -240.
x=\frac{-\left(-17\right)±7}{2\times 3}
Take the square root of 49.
x=\frac{17±7}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±7}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{17±7}{6} when ± is plus. Add 17 to 7.
x=4
Divide 24 by 6.
x=\frac{10}{6}
Now solve the equation x=\frac{17±7}{6} when ± is minus. Subtract 7 from 17.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{5}{3}
The equation is now solved.
3x^{2}-17x+22=2
Use the distributive property to multiply 3x-11 by x-2 and combine like terms.
3x^{2}-17x=2-22
Subtract 22 from both sides.
3x^{2}-17x=-20
Subtract 22 from 2 to get -20.
\frac{3x^{2}-17x}{3}=-\frac{20}{3}
Divide both sides by 3.
x^{2}-\frac{17}{3}x=-\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{20}{3}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{20}{3}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{49}{36}
Add -\frac{20}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{7}{6} x-\frac{17}{6}=-\frac{7}{6}
Simplify.
x=4 x=\frac{5}{3}
Add \frac{17}{6} to both sides of the equation.