Solve for x
x=\frac{2\sqrt{15}}{5}+1\approx 2.549193338
x=-\frac{2\sqrt{15}}{5}+1\approx -0.549193338
Graph
Share
Copied to clipboard
9x^{2}-6x+1-\left(2x+1\right)^{2}=7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1-\left(4x^{2}+4x+1\right)=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
9x^{2}-6x+1-4x^{2}-4x-1=7
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
5x^{2}-6x+1-4x-1=7
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-10x+1-1=7
Combine -6x and -4x to get -10x.
5x^{2}-10x=7
Subtract 1 from 1 to get 0.
5x^{2}-10x-7=0
Subtract 7 from both sides.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -10 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-7\right)}}{2\times 5}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-7\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-10\right)±\sqrt{100+140}}{2\times 5}
Multiply -20 times -7.
x=\frac{-\left(-10\right)±\sqrt{240}}{2\times 5}
Add 100 to 140.
x=\frac{-\left(-10\right)±4\sqrt{15}}{2\times 5}
Take the square root of 240.
x=\frac{10±4\sqrt{15}}{2\times 5}
The opposite of -10 is 10.
x=\frac{10±4\sqrt{15}}{10}
Multiply 2 times 5.
x=\frac{4\sqrt{15}+10}{10}
Now solve the equation x=\frac{10±4\sqrt{15}}{10} when ± is plus. Add 10 to 4\sqrt{15}.
x=\frac{2\sqrt{15}}{5}+1
Divide 10+4\sqrt{15} by 10.
x=\frac{10-4\sqrt{15}}{10}
Now solve the equation x=\frac{10±4\sqrt{15}}{10} when ± is minus. Subtract 4\sqrt{15} from 10.
x=-\frac{2\sqrt{15}}{5}+1
Divide 10-4\sqrt{15} by 10.
x=\frac{2\sqrt{15}}{5}+1 x=-\frac{2\sqrt{15}}{5}+1
The equation is now solved.
9x^{2}-6x+1-\left(2x+1\right)^{2}=7
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
9x^{2}-6x+1-\left(4x^{2}+4x+1\right)=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
9x^{2}-6x+1-4x^{2}-4x-1=7
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
5x^{2}-6x+1-4x-1=7
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-10x+1-1=7
Combine -6x and -4x to get -10x.
5x^{2}-10x=7
Subtract 1 from 1 to get 0.
\frac{5x^{2}-10x}{5}=\frac{7}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-2x=\frac{7}{5}
Divide -10 by 5.
x^{2}-2x+1=\frac{7}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{12}{5}
Add \frac{7}{5} to 1.
\left(x-1\right)^{2}=\frac{12}{5}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{12}{5}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{15}}{5} x-1=-\frac{2\sqrt{15}}{5}
Simplify.
x=\frac{2\sqrt{15}}{5}+1 x=-\frac{2\sqrt{15}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}