Solve for x
x = \frac{\sqrt{89} + 11}{2} \approx 10.216990566
x=\frac{11-\sqrt{89}}{2}\approx 0.783009434
Graph
Share
Copied to clipboard
99x-9x^{2}=72
Use the distributive property to multiply 3x by 33-3x.
99x-9x^{2}-72=0
Subtract 72 from both sides.
-9x^{2}+99x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-99±\sqrt{99^{2}-4\left(-9\right)\left(-72\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 99 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-99±\sqrt{9801-4\left(-9\right)\left(-72\right)}}{2\left(-9\right)}
Square 99.
x=\frac{-99±\sqrt{9801+36\left(-72\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-99±\sqrt{9801-2592}}{2\left(-9\right)}
Multiply 36 times -72.
x=\frac{-99±\sqrt{7209}}{2\left(-9\right)}
Add 9801 to -2592.
x=\frac{-99±9\sqrt{89}}{2\left(-9\right)}
Take the square root of 7209.
x=\frac{-99±9\sqrt{89}}{-18}
Multiply 2 times -9.
x=\frac{9\sqrt{89}-99}{-18}
Now solve the equation x=\frac{-99±9\sqrt{89}}{-18} when ± is plus. Add -99 to 9\sqrt{89}.
x=\frac{11-\sqrt{89}}{2}
Divide -99+9\sqrt{89} by -18.
x=\frac{-9\sqrt{89}-99}{-18}
Now solve the equation x=\frac{-99±9\sqrt{89}}{-18} when ± is minus. Subtract 9\sqrt{89} from -99.
x=\frac{\sqrt{89}+11}{2}
Divide -99-9\sqrt{89} by -18.
x=\frac{11-\sqrt{89}}{2} x=\frac{\sqrt{89}+11}{2}
The equation is now solved.
99x-9x^{2}=72
Use the distributive property to multiply 3x by 33-3x.
-9x^{2}+99x=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+99x}{-9}=\frac{72}{-9}
Divide both sides by -9.
x^{2}+\frac{99}{-9}x=\frac{72}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-11x=\frac{72}{-9}
Divide 99 by -9.
x^{2}-11x=-8
Divide 72 by -9.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-8+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-8+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{89}{4}
Add -8 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{89}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{89}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{\sqrt{89}}{2} x-\frac{11}{2}=-\frac{\sqrt{89}}{2}
Simplify.
x=\frac{\sqrt{89}+11}{2} x=\frac{11-\sqrt{89}}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}