Evaluate
-192yx^{15}
Expand
-192yx^{15}
Share
Copied to clipboard
3x^{6}y\left(-4\right)^{3}\left(x^{3}\right)^{3}
Expand \left(-4x^{3}\right)^{3}.
3x^{6}y\left(-4\right)^{3}x^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
3x^{6}y\left(-64\right)x^{9}
Calculate -4 to the power of 3 and get -64.
-192x^{6}yx^{9}
Multiply 3 and -64 to get -192.
-192x^{15}y
To multiply powers of the same base, add their exponents. Add 6 and 9 to get 15.
3x^{6}y\left(-4\right)^{3}\left(x^{3}\right)^{3}
Expand \left(-4x^{3}\right)^{3}.
3x^{6}y\left(-4\right)^{3}x^{9}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
3x^{6}y\left(-64\right)x^{9}
Calculate -4 to the power of 3 and get -64.
-192x^{6}yx^{9}
Multiply 3 and -64 to get -192.
-192x^{15}y
To multiply powers of the same base, add their exponents. Add 6 and 9 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}