Evaluate
-3x^{2}+45x-50
Expand
-3x^{2}+45x-50
Graph
Share
Copied to clipboard
6x^{2}-15x+10x-25-\left(9x-5\right)\left(x-5\right)
Apply the distributive property by multiplying each term of 3x+5 by each term of 2x-5.
6x^{2}-5x-25-\left(9x-5\right)\left(x-5\right)
Combine -15x and 10x to get -5x.
6x^{2}-5x-25-\left(9x^{2}-45x-5x+25\right)
Apply the distributive property by multiplying each term of 9x-5 by each term of x-5.
6x^{2}-5x-25-\left(9x^{2}-50x+25\right)
Combine -45x and -5x to get -50x.
6x^{2}-5x-25-9x^{2}-\left(-50x\right)-25
To find the opposite of 9x^{2}-50x+25, find the opposite of each term.
6x^{2}-5x-25-9x^{2}+50x-25
The opposite of -50x is 50x.
-3x^{2}-5x-25+50x-25
Combine 6x^{2} and -9x^{2} to get -3x^{2}.
-3x^{2}+45x-25-25
Combine -5x and 50x to get 45x.
-3x^{2}+45x-50
Subtract 25 from -25 to get -50.
6x^{2}-15x+10x-25-\left(9x-5\right)\left(x-5\right)
Apply the distributive property by multiplying each term of 3x+5 by each term of 2x-5.
6x^{2}-5x-25-\left(9x-5\right)\left(x-5\right)
Combine -15x and 10x to get -5x.
6x^{2}-5x-25-\left(9x^{2}-45x-5x+25\right)
Apply the distributive property by multiplying each term of 9x-5 by each term of x-5.
6x^{2}-5x-25-\left(9x^{2}-50x+25\right)
Combine -45x and -5x to get -50x.
6x^{2}-5x-25-9x^{2}-\left(-50x\right)-25
To find the opposite of 9x^{2}-50x+25, find the opposite of each term.
6x^{2}-5x-25-9x^{2}+50x-25
The opposite of -50x is 50x.
-3x^{2}-5x-25+50x-25
Combine 6x^{2} and -9x^{2} to get -3x^{2}.
-3x^{2}+45x-25-25
Combine -5x and 50x to get 45x.
-3x^{2}+45x-50
Subtract 25 from -25 to get -50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}