Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(3x+2\right)x=10
Multiply both sides of the equation by 12, the least common multiple of 4,6.
\left(9x+6\right)x=10
Use the distributive property to multiply 3 by 3x+2.
9x^{2}+6x=10
Use the distributive property to multiply 9x+6 by x.
9x^{2}+6x-10=0
Subtract 10 from both sides.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-10\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 6 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 9\left(-10\right)}}{2\times 9}
Square 6.
x=\frac{-6±\sqrt{36-36\left(-10\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-6±\sqrt{36+360}}{2\times 9}
Multiply -36 times -10.
x=\frac{-6±\sqrt{396}}{2\times 9}
Add 36 to 360.
x=\frac{-6±6\sqrt{11}}{2\times 9}
Take the square root of 396.
x=\frac{-6±6\sqrt{11}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{11}-6}{18}
Now solve the equation x=\frac{-6±6\sqrt{11}}{18} when ± is plus. Add -6 to 6\sqrt{11}.
x=\frac{\sqrt{11}-1}{3}
Divide -6+6\sqrt{11} by 18.
x=\frac{-6\sqrt{11}-6}{18}
Now solve the equation x=\frac{-6±6\sqrt{11}}{18} when ± is minus. Subtract 6\sqrt{11} from -6.
x=\frac{-\sqrt{11}-1}{3}
Divide -6-6\sqrt{11} by 18.
x=\frac{\sqrt{11}-1}{3} x=\frac{-\sqrt{11}-1}{3}
The equation is now solved.
3\left(3x+2\right)x=10
Multiply both sides of the equation by 12, the least common multiple of 4,6.
\left(9x+6\right)x=10
Use the distributive property to multiply 3 by 3x+2.
9x^{2}+6x=10
Use the distributive property to multiply 9x+6 by x.
\frac{9x^{2}+6x}{9}=\frac{10}{9}
Divide both sides by 9.
x^{2}+\frac{6}{9}x=\frac{10}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{3}x=\frac{10}{9}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{10}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{10+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{11}{9}
Add \frac{10}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{11}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{11}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{11}}{3} x+\frac{1}{3}=-\frac{\sqrt{11}}{3}
Simplify.
x=\frac{\sqrt{11}-1}{3} x=\frac{-\sqrt{11}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.