Solve for x
x=-2
x=0
Graph
Share
Copied to clipboard
3x^{2}+10x+3=\frac{1}{3}\left(1-x\right)\left(7x+9\right)
Use the distributive property to multiply 3x+1 by x+3 and combine like terms.
3x^{2}+10x+3=\left(\frac{1}{3}-\frac{1}{3}x\right)\left(7x+9\right)
Use the distributive property to multiply \frac{1}{3} by 1-x.
3x^{2}+10x+3=-\frac{2}{3}x+3-\frac{7}{3}x^{2}
Use the distributive property to multiply \frac{1}{3}-\frac{1}{3}x by 7x+9 and combine like terms.
3x^{2}+10x+3+\frac{2}{3}x=3-\frac{7}{3}x^{2}
Add \frac{2}{3}x to both sides.
3x^{2}+\frac{32}{3}x+3=3-\frac{7}{3}x^{2}
Combine 10x and \frac{2}{3}x to get \frac{32}{3}x.
3x^{2}+\frac{32}{3}x+3-3=-\frac{7}{3}x^{2}
Subtract 3 from both sides.
3x^{2}+\frac{32}{3}x=-\frac{7}{3}x^{2}
Subtract 3 from 3 to get 0.
3x^{2}+\frac{32}{3}x+\frac{7}{3}x^{2}=0
Add \frac{7}{3}x^{2} to both sides.
\frac{16}{3}x^{2}+\frac{32}{3}x=0
Combine 3x^{2} and \frac{7}{3}x^{2} to get \frac{16}{3}x^{2}.
x=\frac{-\frac{32}{3}±\sqrt{\left(\frac{32}{3}\right)^{2}}}{2\times \frac{16}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{16}{3} for a, \frac{32}{3} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{32}{3}±\frac{32}{3}}{2\times \frac{16}{3}}
Take the square root of \left(\frac{32}{3}\right)^{2}.
x=\frac{-\frac{32}{3}±\frac{32}{3}}{\frac{32}{3}}
Multiply 2 times \frac{16}{3}.
x=\frac{0}{\frac{32}{3}}
Now solve the equation x=\frac{-\frac{32}{3}±\frac{32}{3}}{\frac{32}{3}} when ± is plus. Add -\frac{32}{3} to \frac{32}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by \frac{32}{3} by multiplying 0 by the reciprocal of \frac{32}{3}.
x=-\frac{\frac{64}{3}}{\frac{32}{3}}
Now solve the equation x=\frac{-\frac{32}{3}±\frac{32}{3}}{\frac{32}{3}} when ± is minus. Subtract \frac{32}{3} from -\frac{32}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide -\frac{64}{3} by \frac{32}{3} by multiplying -\frac{64}{3} by the reciprocal of \frac{32}{3}.
x=0 x=-2
The equation is now solved.
3x^{2}+10x+3=\frac{1}{3}\left(1-x\right)\left(7x+9\right)
Use the distributive property to multiply 3x+1 by x+3 and combine like terms.
3x^{2}+10x+3=\left(\frac{1}{3}-\frac{1}{3}x\right)\left(7x+9\right)
Use the distributive property to multiply \frac{1}{3} by 1-x.
3x^{2}+10x+3=-\frac{2}{3}x+3-\frac{7}{3}x^{2}
Use the distributive property to multiply \frac{1}{3}-\frac{1}{3}x by 7x+9 and combine like terms.
3x^{2}+10x+3+\frac{2}{3}x=3-\frac{7}{3}x^{2}
Add \frac{2}{3}x to both sides.
3x^{2}+\frac{32}{3}x+3=3-\frac{7}{3}x^{2}
Combine 10x and \frac{2}{3}x to get \frac{32}{3}x.
3x^{2}+\frac{32}{3}x+3+\frac{7}{3}x^{2}=3
Add \frac{7}{3}x^{2} to both sides.
\frac{16}{3}x^{2}+\frac{32}{3}x+3=3
Combine 3x^{2} and \frac{7}{3}x^{2} to get \frac{16}{3}x^{2}.
\frac{16}{3}x^{2}+\frac{32}{3}x=3-3
Subtract 3 from both sides.
\frac{16}{3}x^{2}+\frac{32}{3}x=0
Subtract 3 from 3 to get 0.
\frac{\frac{16}{3}x^{2}+\frac{32}{3}x}{\frac{16}{3}}=\frac{0}{\frac{16}{3}}
Divide both sides of the equation by \frac{16}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{32}{3}}{\frac{16}{3}}x=\frac{0}{\frac{16}{3}}
Dividing by \frac{16}{3} undoes the multiplication by \frac{16}{3}.
x^{2}+2x=\frac{0}{\frac{16}{3}}
Divide \frac{32}{3} by \frac{16}{3} by multiplying \frac{32}{3} by the reciprocal of \frac{16}{3}.
x^{2}+2x=0
Divide 0 by \frac{16}{3} by multiplying 0 by the reciprocal of \frac{16}{3}.
x^{2}+2x+1^{2}=1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1
Square 1.
\left(x+1\right)^{2}=1
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+1=1 x+1=-1
Simplify.
x=0 x=-2
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}