Solve for r
r\leq -8
Share
Copied to clipboard
3r+7\leq \frac{-34}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
3r+7\leq -17
Divide -34 by 2 to get -17.
3r\leq -17-7
Subtract 7 from both sides.
3r\leq -24
Subtract 7 from -17 to get -24.
r\leq \frac{-24}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
r\leq -8
Divide -24 by 3 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}