Evaluate
-\frac{11}{6}+\frac{1}{2}i\approx -1.833333333+0.5i
Real Part
-\frac{11}{6} = -1\frac{5}{6} = -1.8333333333333333
Share
Copied to clipboard
\left(3i-1\right)\left(\frac{1}{3}+\frac{1}{2}i\right)
Divide i by 2 to get \frac{1}{2}i.
-\frac{3}{2}+i+\left(-\frac{1}{3}-\frac{1}{2}i\right)
Use the distributive property to multiply 3i-1 by \frac{1}{3}+\frac{1}{2}i.
-\frac{3}{2}-\frac{1}{3}+\left(1-\frac{1}{2}\right)i
Combine the real and imaginary parts in numbers -\frac{3}{2}+i and -\frac{1}{3}-\frac{1}{2}i.
-\frac{11}{6}+\frac{1}{2}i
Add -\frac{3}{2} to -\frac{1}{3}. Add 1 to -\frac{1}{2}.
Re(\left(3i-1\right)\left(\frac{1}{3}+\frac{1}{2}i\right))
Divide i by 2 to get \frac{1}{2}i.
Re(-\frac{3}{2}+i+\left(-\frac{1}{3}-\frac{1}{2}i\right))
Use the distributive property to multiply 3i-1 by \frac{1}{3}+\frac{1}{2}i.
Re(-\frac{3}{2}-\frac{1}{3}+\left(1-\frac{1}{2}\right)i)
Combine the real and imaginary parts in numbers -\frac{3}{2}+i and -\frac{1}{3}-\frac{1}{2}i.
Re(-\frac{11}{6}+\frac{1}{2}i)
Add -\frac{3}{2} to -\frac{1}{3}. Add 1 to -\frac{1}{2}.
-\frac{11}{6}
The real part of -\frac{11}{6}+\frac{1}{2}i is -\frac{11}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}