Solve for a
a\in \mathrm{R}
Share
Copied to clipboard
9a^{2}-12a+4-4\left(a-1\right)>0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3a-2\right)^{2}.
9a^{2}-12a+4-4a+4>0
Use the distributive property to multiply -4 by a-1.
9a^{2}-16a+4+4>0
Combine -12a and -4a to get -16a.
9a^{2}-16a+8>0
Add 4 and 4 to get 8.
9a^{2}-16a+8=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 9\times 8}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -16 for b, and 8 for c in the quadratic formula.
a=\frac{16±\sqrt{-32}}{18}
Do the calculations.
9\times 0^{2}-16\times 0+8=8
Since the square root of a negative number is not defined in the real field, there are no solutions. Expression 9a^{2}-16a+8 has the same sign for any a. To determine the sign, calculate the value of the expression for a=0.
a\in \mathrm{R}
The value of the expression 9a^{2}-16a+8 is always positive. Inequality holds for a\in \mathrm{R}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}