Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

9a^{2}+30a+25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3a+5\right)^{2}.
a+b=30 ab=9\times 25=225
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9a^{2}+aa+ba+25. To find a and b, set up a system to be solved.
1,225 3,75 5,45 9,25 15,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Calculate the sum for each pair.
a=15 b=15
The solution is the pair that gives sum 30.
\left(9a^{2}+15a\right)+\left(15a+25\right)
Rewrite 9a^{2}+30a+25 as \left(9a^{2}+15a\right)+\left(15a+25\right).
3a\left(3a+5\right)+5\left(3a+5\right)
Factor out 3a in the first and 5 in the second group.
\left(3a+5\right)\left(3a+5\right)
Factor out common term 3a+5 by using distributive property.
\left(3a+5\right)^{2}
Rewrite as a binomial square.
a=-\frac{5}{3}
To find equation solution, solve 3a+5=0.
9a^{2}+30a+25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3a+5\right)^{2}.
a=\frac{-30±\sqrt{30^{2}-4\times 9\times 25}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 30 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-30±\sqrt{900-4\times 9\times 25}}{2\times 9}
Square 30.
a=\frac{-30±\sqrt{900-36\times 25}}{2\times 9}
Multiply -4 times 9.
a=\frac{-30±\sqrt{900-900}}{2\times 9}
Multiply -36 times 25.
a=\frac{-30±\sqrt{0}}{2\times 9}
Add 900 to -900.
a=-\frac{30}{2\times 9}
Take the square root of 0.
a=-\frac{30}{18}
Multiply 2 times 9.
a=-\frac{5}{3}
Reduce the fraction \frac{-30}{18} to lowest terms by extracting and canceling out 6.
9a^{2}+30a+25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3a+5\right)^{2}.
9a^{2}+30a=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
\frac{9a^{2}+30a}{9}=-\frac{25}{9}
Divide both sides by 9.
a^{2}+\frac{30}{9}a=-\frac{25}{9}
Dividing by 9 undoes the multiplication by 9.
a^{2}+\frac{10}{3}a=-\frac{25}{9}
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.
a^{2}+\frac{10}{3}a+\left(\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{10}{3}a+\frac{25}{9}=\frac{-25+25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{10}{3}a+\frac{25}{9}=0
Add -\frac{25}{9} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{5}{3}\right)^{2}=0
Factor a^{2}+\frac{10}{3}a+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{5}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
a+\frac{5}{3}=0 a+\frac{5}{3}=0
Simplify.
a=-\frac{5}{3} a=-\frac{5}{3}
Subtract \frac{5}{3} from both sides of the equation.
a=-\frac{5}{3}
The equation is now solved. Solutions are the same.