Solve for x
x=-\frac{8}{13}-\frac{1}{13}i\approx -0.615384615-0.076923077i
Share
Copied to clipboard
3-2i+\left(3-2i\right)x=\frac{1-i}{i}+2
Use the distributive property to multiply 3-2i by 1+x.
3-2i+\left(3-2i\right)x=\frac{\left(1-i\right)i}{1i^{2}}+2
Multiply both numerator and denominator of \frac{1-i}{i} by imaginary unit i.
3-2i+\left(3-2i\right)x=\frac{\left(1-i\right)i}{-1}+2
By definition, i^{2} is -1. Calculate the denominator.
3-2i+\left(3-2i\right)x=\frac{i-i^{2}}{-1}+2
Multiply 1-i times i.
3-2i+\left(3-2i\right)x=\frac{i-\left(-1\right)}{-1}+2
By definition, i^{2} is -1.
3-2i+\left(3-2i\right)x=\frac{1+i}{-1}+2
Do the multiplications in i-\left(-1\right). Reorder the terms.
3-2i+\left(3-2i\right)x=-1-i+2
Divide 1+i by -1 to get -1-i.
3-2i+\left(3-2i\right)x=-1+2-i
Combine the real and imaginary parts in numbers -1-i and 2.
3-2i+\left(3-2i\right)x=1-i
Add -1 to 2.
\left(3-2i\right)x=1-i-\left(3-2i\right)
Subtract 3-2i from both sides.
\left(3-2i\right)x=1-3+\left(-1-\left(-2\right)\right)i
Subtract 3-2i from 1-i by subtracting corresponding real and imaginary parts.
\left(3-2i\right)x=-2+i
Subtract 3 from 1. Subtract -2 from -1.
x=\frac{-2+i}{3-2i}
Divide both sides by 3-2i.
x=\frac{\left(-2+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Multiply both numerator and denominator of \frac{-2+i}{3-2i} by the complex conjugate of the denominator, 3+2i.
x=\frac{\left(-2+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(-2+i\right)\left(3+2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
x=\frac{-2\times 3-2\times \left(2i\right)+3i+2i^{2}}{13}
Multiply complex numbers -2+i and 3+2i like you multiply binomials.
x=\frac{-2\times 3-2\times \left(2i\right)+3i+2\left(-1\right)}{13}
By definition, i^{2} is -1.
x=\frac{-6-4i+3i-2}{13}
Do the multiplications in -2\times 3-2\times \left(2i\right)+3i+2\left(-1\right).
x=\frac{-6-2+\left(-4+3\right)i}{13}
Combine the real and imaginary parts in -6-4i+3i-2.
x=\frac{-8-i}{13}
Do the additions in -6-2+\left(-4+3\right)i.
x=-\frac{8}{13}-\frac{1}{13}i
Divide -8-i by 13 to get -\frac{8}{13}-\frac{1}{13}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}