Evaluate
\frac{3\left(4-t\right)^{2}}{8}
Expand
\frac{3t^{2}}{8}-3t+6
Share
Copied to clipboard
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t\left(-1\right)t\right)\times \frac{1}{2}
Apply the distributive property by multiplying each term of 3-\frac{3}{4}t by each term of 4-t.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Multiply t and t to get t^{2}.
\left(12-3t-3t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Cancel out 4 and 4.
\left(12-6t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Combine -3t and -3t to get -6t.
\left(12-6t+\frac{3}{4}t^{2}\right)\times \frac{1}{2}
Multiply -\frac{3}{4} and -1 to get \frac{3}{4}.
12\times \frac{1}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Use the distributive property to multiply 12-6t+\frac{3}{4}t^{2} by \frac{1}{2}.
\frac{12}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Multiply 12 and \frac{1}{2} to get \frac{12}{2}.
6-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Divide 12 by 2 to get 6.
6+\frac{-6}{2}t+\frac{3}{4}t^{2}\times \frac{1}{2}
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
6-3t+\frac{3}{4}t^{2}\times \frac{1}{2}
Divide -6 by 2 to get -3.
6-3t+\frac{3\times 1}{4\times 2}t^{2}
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
6-3t+\frac{3}{8}t^{2}
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t\left(-1\right)t\right)\times \frac{1}{2}
Apply the distributive property by multiplying each term of 3-\frac{3}{4}t by each term of 4-t.
\left(12-3t-\frac{3}{4}t\times 4-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Multiply t and t to get t^{2}.
\left(12-3t-3t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Cancel out 4 and 4.
\left(12-6t-\frac{3}{4}t^{2}\left(-1\right)\right)\times \frac{1}{2}
Combine -3t and -3t to get -6t.
\left(12-6t+\frac{3}{4}t^{2}\right)\times \frac{1}{2}
Multiply -\frac{3}{4} and -1 to get \frac{3}{4}.
12\times \frac{1}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Use the distributive property to multiply 12-6t+\frac{3}{4}t^{2} by \frac{1}{2}.
\frac{12}{2}-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Multiply 12 and \frac{1}{2} to get \frac{12}{2}.
6-6t\times \frac{1}{2}+\frac{3}{4}t^{2}\times \frac{1}{2}
Divide 12 by 2 to get 6.
6+\frac{-6}{2}t+\frac{3}{4}t^{2}\times \frac{1}{2}
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
6-3t+\frac{3}{4}t^{2}\times \frac{1}{2}
Divide -6 by 2 to get -3.
6-3t+\frac{3\times 1}{4\times 2}t^{2}
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
6-3t+\frac{3}{8}t^{2}
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}