Evaluate
\frac{3}{20}=0.15
Factor
\frac{3}{2 ^ {2} \cdot 5} = 0.15
Share
Copied to clipboard
\frac{\left(\frac{12}{4}-\frac{1}{4}-\frac{5}{4}\right)\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Convert 3 to fraction \frac{12}{4}.
\frac{\left(\frac{12-1}{4}-\frac{5}{4}\right)\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Since \frac{12}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{11}{4}-\frac{5}{4}\right)\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Subtract 1 from 12 to get 11.
\frac{\frac{11-5}{4}\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Since \frac{11}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6}{4}\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Subtract 5 from 11 to get 6.
\frac{\frac{3}{2}\times \frac{1}{4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{3\times 1}{2\times 4}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Multiply \frac{3}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{8}}{2-\left(\frac{1}{5}-\frac{3}{10}\right)\times 5}
Do the multiplications in the fraction \frac{3\times 1}{2\times 4}.
\frac{\frac{3}{8}}{2-\left(\frac{2}{10}-\frac{3}{10}\right)\times 5}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{\frac{3}{8}}{2-\frac{2-3}{10}\times 5}
Since \frac{2}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{8}}{2-\left(-\frac{1}{10}\times 5\right)}
Subtract 3 from 2 to get -1.
\frac{\frac{3}{8}}{2-\frac{-5}{10}}
Express -\frac{1}{10}\times 5 as a single fraction.
\frac{\frac{3}{8}}{2-\left(-\frac{1}{2}\right)}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{3}{8}}{2+\frac{1}{2}}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{\frac{3}{8}}{\frac{4}{2}+\frac{1}{2}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{3}{8}}{\frac{4+1}{2}}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{8}}{\frac{5}{2}}
Add 4 and 1 to get 5.
\frac{3}{8}\times \frac{2}{5}
Divide \frac{3}{8} by \frac{5}{2} by multiplying \frac{3}{8} by the reciprocal of \frac{5}{2}.
\frac{3\times 2}{8\times 5}
Multiply \frac{3}{8} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{40}
Do the multiplications in the fraction \frac{3\times 2}{8\times 5}.
\frac{3}{20}
Reduce the fraction \frac{6}{40} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}