Evaluate
\frac{121}{2}=60.5
Factor
\frac{11 ^ {2}}{2} = 60\frac{1}{2} = 60.5
Share
Copied to clipboard
\left(-6-2\left(-1\right)\right)\left(2\times \frac{1}{2}-24\times \frac{1}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Multiply 3 and -2 to get -6.
\left(-6-\left(-2\right)\right)\left(2\times \frac{1}{2}-24\times \frac{1}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Multiply 2 and -1 to get -2.
\left(-6+2\right)\left(2\times \frac{1}{2}-24\times \frac{1}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
The opposite of -2 is 2.
-4\left(2\times \frac{1}{2}-24\times \frac{1}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Add -6 and 2 to get -4.
-4\left(1-24\times \frac{1}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Cancel out 2 and 2.
-4\left(1-\frac{24}{2}\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Multiply 24 and \frac{1}{2} to get \frac{24}{2}.
-4\left(1-12\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Divide 24 by 2 to get 12.
-4\left(-11\right)+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Subtract 12 from 1 to get -11.
44+4\left(-2\right)^{2}\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Multiply -4 and -11 to get 44.
44+4\times 4\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Calculate -2 to the power of 2 and get 4.
44+16\left(-1\right)^{2}-\frac{-2-\left(-1\right)}{2}
Multiply 4 and 4 to get 16.
44+16\times 1-\frac{-2-\left(-1\right)}{2}
Calculate -1 to the power of 2 and get 1.
44+16-\frac{-2-\left(-1\right)}{2}
Multiply 16 and 1 to get 16.
60-\frac{-2-\left(-1\right)}{2}
Add 44 and 16 to get 60.
60-\frac{-2+1}{2}
The opposite of -1 is 1.
60-\frac{-1}{2}
Add -2 and 1 to get -1.
60-\left(-\frac{1}{2}\right)
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
60+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{120}{2}+\frac{1}{2}
Convert 60 to fraction \frac{120}{2}.
\frac{120+1}{2}
Since \frac{120}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{121}{2}
Add 120 and 1 to get 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}