Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{6}-\sqrt{15}\right)^{2}.
9\times 6-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{6} is 6.
54-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 9 and 6 to get 54.
54-6\sqrt{90}+\left(\sqrt{15}\right)^{2}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
54-6\sqrt{90}+15
The square of \sqrt{15} is 15.
69-6\sqrt{90}
Add 54 and 15 to get 69.
69-6\times 3\sqrt{10}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
69-18\sqrt{10}
Multiply -6 and 3 to get -18.
9\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{6}-\sqrt{15}\right)^{2}.
9\times 6-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{6} is 6.
54-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 9 and 6 to get 54.
54-6\sqrt{90}+\left(\sqrt{15}\right)^{2}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
54-6\sqrt{90}+15
The square of \sqrt{15} is 15.
69-6\sqrt{90}
Add 54 and 15 to get 69.
69-6\times 3\sqrt{10}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
69-18\sqrt{10}
Multiply -6 and 3 to get -18.