Evaluate
69-18\sqrt{10}\approx 12.079002117
Expand
69-18\sqrt{10}
Share
Copied to clipboard
9\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{6}-\sqrt{15}\right)^{2}.
9\times 6-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{6} is 6.
54-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 9 and 6 to get 54.
54-6\sqrt{90}+\left(\sqrt{15}\right)^{2}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
54-6\sqrt{90}+15
The square of \sqrt{15} is 15.
69-6\sqrt{90}
Add 54 and 15 to get 69.
69-6\times 3\sqrt{10}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
69-18\sqrt{10}
Multiply -6 and 3 to get -18.
9\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{6}-\sqrt{15}\right)^{2}.
9\times 6-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{6} is 6.
54-6\sqrt{6}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 9 and 6 to get 54.
54-6\sqrt{90}+\left(\sqrt{15}\right)^{2}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
54-6\sqrt{90}+15
The square of \sqrt{15} is 15.
69-6\sqrt{90}
Add 54 and 15 to get 69.
69-6\times 3\sqrt{10}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
69-18\sqrt{10}
Multiply -6 and 3 to get -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}