Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{3}\right)^{2}.
9\times 2-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
18-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Multiply 9 and 2 to get 18.
18-6\sqrt{6}+\left(\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
18-6\sqrt{6}+3
The square of \sqrt{3} is 3.
21-6\sqrt{6}
Add 18 and 3 to get 21.
9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{3}\right)^{2}.
9\times 2-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
18-6\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Multiply 9 and 2 to get 18.
18-6\sqrt{6}+\left(\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
18-6\sqrt{6}+3
The square of \sqrt{3} is 3.
21-6\sqrt{6}
Add 18 and 3 to get 21.