Solve for λ
\lambda =\frac{\sqrt{2}-1}{3}\approx 0.138071187
\lambda =\frac{-\sqrt{2}-1}{3}\approx -0.804737854
Share
Copied to clipboard
9\lambda ^{2}+6\lambda +1=1^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\lambda +1\right)^{2}.
9\lambda ^{2}+6\lambda +1=1+1
Calculate 1 to the power of 2 and get 1.
9\lambda ^{2}+6\lambda +1=2
Add 1 and 1 to get 2.
9\lambda ^{2}+6\lambda +1-2=0
Subtract 2 from both sides.
9\lambda ^{2}+6\lambda -1=0
Subtract 2 from 1 to get -1.
\lambda =\frac{-6±\sqrt{6^{2}-4\times 9\left(-1\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-6±\sqrt{36-4\times 9\left(-1\right)}}{2\times 9}
Square 6.
\lambda =\frac{-6±\sqrt{36-36\left(-1\right)}}{2\times 9}
Multiply -4 times 9.
\lambda =\frac{-6±\sqrt{36+36}}{2\times 9}
Multiply -36 times -1.
\lambda =\frac{-6±\sqrt{72}}{2\times 9}
Add 36 to 36.
\lambda =\frac{-6±6\sqrt{2}}{2\times 9}
Take the square root of 72.
\lambda =\frac{-6±6\sqrt{2}}{18}
Multiply 2 times 9.
\lambda =\frac{6\sqrt{2}-6}{18}
Now solve the equation \lambda =\frac{-6±6\sqrt{2}}{18} when ± is plus. Add -6 to 6\sqrt{2}.
\lambda =\frac{\sqrt{2}-1}{3}
Divide -6+6\sqrt{2} by 18.
\lambda =\frac{-6\sqrt{2}-6}{18}
Now solve the equation \lambda =\frac{-6±6\sqrt{2}}{18} when ± is minus. Subtract 6\sqrt{2} from -6.
\lambda =\frac{-\sqrt{2}-1}{3}
Divide -6-6\sqrt{2} by 18.
\lambda =\frac{\sqrt{2}-1}{3} \lambda =\frac{-\sqrt{2}-1}{3}
The equation is now solved.
9\lambda ^{2}+6\lambda +1=1^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\lambda +1\right)^{2}.
9\lambda ^{2}+6\lambda +1=1+1
Calculate 1 to the power of 2 and get 1.
9\lambda ^{2}+6\lambda +1=2
Add 1 and 1 to get 2.
9\lambda ^{2}+6\lambda =2-1
Subtract 1 from both sides.
9\lambda ^{2}+6\lambda =1
Subtract 1 from 2 to get 1.
\frac{9\lambda ^{2}+6\lambda }{9}=\frac{1}{9}
Divide both sides by 9.
\lambda ^{2}+\frac{6}{9}\lambda =\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
\lambda ^{2}+\frac{2}{3}\lambda =\frac{1}{9}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\lambda ^{2}+\frac{2}{3}\lambda +\left(\frac{1}{3}\right)^{2}=\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{2}{3}\lambda +\frac{1}{9}=\frac{1+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{2}{3}\lambda +\frac{1}{9}=\frac{2}{9}
Add \frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda +\frac{1}{3}\right)^{2}=\frac{2}{9}
Factor \lambda ^{2}+\frac{2}{3}\lambda +\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{1}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
Take the square root of both sides of the equation.
\lambda +\frac{1}{3}=\frac{\sqrt{2}}{3} \lambda +\frac{1}{3}=-\frac{\sqrt{2}}{3}
Simplify.
\lambda =\frac{\sqrt{2}-1}{3} \lambda =\frac{-\sqrt{2}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}