Solve for r
r = \frac{109}{35} = 3\frac{4}{35} \approx 3.114285714
Share
Copied to clipboard
1.05+0.35r=\frac{1.42-0.35}{0.5}
Use the distributive property to multiply 3+r by 0.35.
1.05+0.35r=\frac{1.07}{0.5}
Subtract 0.35 from 1.42 to get 1.07.
1.05+0.35r=\frac{107}{50}
Expand \frac{1.07}{0.5} by multiplying both numerator and the denominator by 100.
0.35r=\frac{107}{50}-1.05
Subtract 1.05 from both sides.
0.35r=\frac{107}{50}-\frac{21}{20}
Convert decimal number 1.05 to fraction \frac{105}{100}. Reduce the fraction \frac{105}{100} to lowest terms by extracting and canceling out 5.
0.35r=\frac{214}{100}-\frac{105}{100}
Least common multiple of 50 and 20 is 100. Convert \frac{107}{50} and \frac{21}{20} to fractions with denominator 100.
0.35r=\frac{214-105}{100}
Since \frac{214}{100} and \frac{105}{100} have the same denominator, subtract them by subtracting their numerators.
0.35r=\frac{109}{100}
Subtract 105 from 214 to get 109.
r=\frac{\frac{109}{100}}{0.35}
Divide both sides by 0.35.
r=\frac{109}{100\times 0.35}
Express \frac{\frac{109}{100}}{0.35} as a single fraction.
r=\frac{109}{35}
Multiply 100 and 0.35 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}