Solve for r
r=3\sqrt{14}-9\approx 2.22497216
r=-3\sqrt{14}-9\approx -20.22497216
Share
Copied to clipboard
9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+r\right)^{2}.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(15+r\right)^{2}.
234+6r+r^{2}+30r+r^{2}=18^{2}
Add 9 and 225 to get 234.
234+36r+r^{2}+r^{2}=18^{2}
Combine 6r and 30r to get 36r.
234+36r+2r^{2}=18^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
234+36r+2r^{2}=324
Calculate 18 to the power of 2 and get 324.
234+36r+2r^{2}-324=0
Subtract 324 from both sides.
-90+36r+2r^{2}=0
Subtract 324 from 234 to get -90.
2r^{2}+36r-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-36±\sqrt{36^{2}-4\times 2\left(-90\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 36 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-36±\sqrt{1296-4\times 2\left(-90\right)}}{2\times 2}
Square 36.
r=\frac{-36±\sqrt{1296-8\left(-90\right)}}{2\times 2}
Multiply -4 times 2.
r=\frac{-36±\sqrt{1296+720}}{2\times 2}
Multiply -8 times -90.
r=\frac{-36±\sqrt{2016}}{2\times 2}
Add 1296 to 720.
r=\frac{-36±12\sqrt{14}}{2\times 2}
Take the square root of 2016.
r=\frac{-36±12\sqrt{14}}{4}
Multiply 2 times 2.
r=\frac{12\sqrt{14}-36}{4}
Now solve the equation r=\frac{-36±12\sqrt{14}}{4} when ± is plus. Add -36 to 12\sqrt{14}.
r=3\sqrt{14}-9
Divide -36+12\sqrt{14} by 4.
r=\frac{-12\sqrt{14}-36}{4}
Now solve the equation r=\frac{-36±12\sqrt{14}}{4} when ± is minus. Subtract 12\sqrt{14} from -36.
r=-3\sqrt{14}-9
Divide -36-12\sqrt{14} by 4.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
The equation is now solved.
9+6r+r^{2}+\left(15+r\right)^{2}=18^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+r\right)^{2}.
9+6r+r^{2}+225+30r+r^{2}=18^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(15+r\right)^{2}.
234+6r+r^{2}+30r+r^{2}=18^{2}
Add 9 and 225 to get 234.
234+36r+r^{2}+r^{2}=18^{2}
Combine 6r and 30r to get 36r.
234+36r+2r^{2}=18^{2}
Combine r^{2} and r^{2} to get 2r^{2}.
234+36r+2r^{2}=324
Calculate 18 to the power of 2 and get 324.
36r+2r^{2}=324-234
Subtract 234 from both sides.
36r+2r^{2}=90
Subtract 234 from 324 to get 90.
2r^{2}+36r=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2r^{2}+36r}{2}=\frac{90}{2}
Divide both sides by 2.
r^{2}+\frac{36}{2}r=\frac{90}{2}
Dividing by 2 undoes the multiplication by 2.
r^{2}+18r=\frac{90}{2}
Divide 36 by 2.
r^{2}+18r=45
Divide 90 by 2.
r^{2}+18r+9^{2}=45+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+18r+81=45+81
Square 9.
r^{2}+18r+81=126
Add 45 to 81.
\left(r+9\right)^{2}=126
Factor r^{2}+18r+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+9\right)^{2}}=\sqrt{126}
Take the square root of both sides of the equation.
r+9=3\sqrt{14} r+9=-3\sqrt{14}
Simplify.
r=3\sqrt{14}-9 r=-3\sqrt{14}-9
Subtract 9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}