Solve for z
z=1-i
Share
Copied to clipboard
z=\frac{7+i}{3+4i}
Divide both sides by 3+4i.
z=\frac{\left(7+i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator of \frac{7+i}{3+4i} by the complex conjugate of the denominator, 3-4i.
z=\frac{\left(7+i\right)\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(7+i\right)\left(3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{7\times 3+7\times \left(-4i\right)+3i-4i^{2}}{25}
Multiply complex numbers 7+i and 3-4i like you multiply binomials.
z=\frac{7\times 3+7\times \left(-4i\right)+3i-4\left(-1\right)}{25}
By definition, i^{2} is -1.
z=\frac{21-28i+3i+4}{25}
Do the multiplications in 7\times 3+7\times \left(-4i\right)+3i-4\left(-1\right).
z=\frac{21+4+\left(-28+3\right)i}{25}
Combine the real and imaginary parts in 21-28i+3i+4.
z=\frac{25-25i}{25}
Do the additions in 21+4+\left(-28+3\right)i.
z=1-i
Divide 25-25i by 25 to get 1-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}