Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(3+2\sqrt{2}\right)\left(9-12\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-2\sqrt{2}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(9-12\sqrt{2}+4\times 2\right)
The square of \sqrt{2} is 2.
\left(3+2\sqrt{2}\right)\left(9-12\sqrt{2}+8\right)
Multiply 4 and 2 to get 8.
\left(3+2\sqrt{2}\right)\left(17-12\sqrt{2}\right)
Add 9 and 8 to get 17.
51-2\sqrt{2}-24\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 3+2\sqrt{2} by 17-12\sqrt{2} and combine like terms.
51-2\sqrt{2}-24\times 2
The square of \sqrt{2} is 2.
51-2\sqrt{2}-48
Multiply -24 and 2 to get -48.
3-2\sqrt{2}
Subtract 48 from 51 to get 3.