Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)+7\left(\sqrt{2}\right)^{2}=21
Multiply both sides of the equation by 7.
9-\left(\sqrt{2}\right)^{2}+7\left(\sqrt{2}\right)^{2}=21
Consider \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9-2+7\left(\sqrt{2}\right)^{2}=21
The square of \sqrt{2} is 2.
7+7\left(\sqrt{2}\right)^{2}=21
Subtract 2 from 9 to get 7.
7+7\times 2=21
The square of \sqrt{2} is 2.
7+14=21
Multiply 7 and 2 to get 14.
21=21
Add 7 and 14 to get 21.
\text{true}
Compare 21 and 21.