Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(6x^{2}+25x+25\right)
Factor out 4.
a+b=25 ab=6\times 25=150
Consider 6x^{2}+25x+25. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx+25. To find a and b, set up a system to be solved.
1,150 2,75 3,50 5,30 6,25 10,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 150.
1+150=151 2+75=77 3+50=53 5+30=35 6+25=31 10+15=25
Calculate the sum for each pair.
a=10 b=15
The solution is the pair that gives sum 25.
\left(6x^{2}+10x\right)+\left(15x+25\right)
Rewrite 6x^{2}+25x+25 as \left(6x^{2}+10x\right)+\left(15x+25\right).
2x\left(3x+5\right)+5\left(3x+5\right)
Factor out 2x in the first and 5 in the second group.
\left(3x+5\right)\left(2x+5\right)
Factor out common term 3x+5 by using distributive property.
4\left(3x+5\right)\left(2x+5\right)
Rewrite the complete factored expression.
24x^{2}+100x+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-100±\sqrt{100^{2}-4\times 24\times 100}}{2\times 24}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{10000-4\times 24\times 100}}{2\times 24}
Square 100.
x=\frac{-100±\sqrt{10000-96\times 100}}{2\times 24}
Multiply -4 times 24.
x=\frac{-100±\sqrt{10000-9600}}{2\times 24}
Multiply -96 times 100.
x=\frac{-100±\sqrt{400}}{2\times 24}
Add 10000 to -9600.
x=\frac{-100±20}{2\times 24}
Take the square root of 400.
x=\frac{-100±20}{48}
Multiply 2 times 24.
x=-\frac{80}{48}
Now solve the equation x=\frac{-100±20}{48} when ± is plus. Add -100 to 20.
x=-\frac{5}{3}
Reduce the fraction \frac{-80}{48} to lowest terms by extracting and canceling out 16.
x=-\frac{120}{48}
Now solve the equation x=\frac{-100±20}{48} when ± is minus. Subtract 20 from -100.
x=-\frac{5}{2}
Reduce the fraction \frac{-120}{48} to lowest terms by extracting and canceling out 24.
24x^{2}+100x+100=24\left(x-\left(-\frac{5}{3}\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and -\frac{5}{2} for x_{2}.
24x^{2}+100x+100=24\left(x+\frac{5}{3}\right)\left(x+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
24x^{2}+100x+100=24\times \frac{3x+5}{3}\left(x+\frac{5}{2}\right)
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+100x+100=24\times \frac{3x+5}{3}\times \frac{2x+5}{2}
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
24x^{2}+100x+100=24\times \frac{\left(3x+5\right)\left(2x+5\right)}{3\times 2}
Multiply \frac{3x+5}{3} times \frac{2x+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
24x^{2}+100x+100=24\times \frac{\left(3x+5\right)\left(2x+5\right)}{6}
Multiply 3 times 2.
24x^{2}+100x+100=4\left(3x+5\right)\left(2x+5\right)
Cancel out 6, the greatest common factor in 24 and 6.