Solve for x
x=-1
x=\frac{1}{4076361}\approx 0.000000245
Graph
Share
Copied to clipboard
2019^{2}x^{2}+2018\times 2020x=1
Expand \left(2019x\right)^{2}.
4076361x^{2}+2018\times 2020x=1
Calculate 2019 to the power of 2 and get 4076361.
4076361x^{2}+4076360x=1
Multiply 2018 and 2020 to get 4076360.
4076361x^{2}+4076360x-1=0
Subtract 1 from both sides.
a+b=4076360 ab=4076361\left(-1\right)=-4076361
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4076361x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,4076361 -3,1358787 -9,452929 -673,6057 -2019,2019
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4076361.
-1+4076361=4076360 -3+1358787=1358784 -9+452929=452920 -673+6057=5384 -2019+2019=0
Calculate the sum for each pair.
a=-1 b=4076361
The solution is the pair that gives sum 4076360.
\left(4076361x^{2}-x\right)+\left(4076361x-1\right)
Rewrite 4076361x^{2}+4076360x-1 as \left(4076361x^{2}-x\right)+\left(4076361x-1\right).
x\left(4076361x-1\right)+4076361x-1
Factor out x in 4076361x^{2}-x.
\left(4076361x-1\right)\left(x+1\right)
Factor out common term 4076361x-1 by using distributive property.
x=\frac{1}{4076361} x=-1
To find equation solutions, solve 4076361x-1=0 and x+1=0.
2019^{2}x^{2}+2018\times 2020x=1
Expand \left(2019x\right)^{2}.
4076361x^{2}+2018\times 2020x=1
Calculate 2019 to the power of 2 and get 4076361.
4076361x^{2}+4076360x=1
Multiply 2018 and 2020 to get 4076360.
4076361x^{2}+4076360x-1=0
Subtract 1 from both sides.
x=\frac{-4076360±\sqrt{4076360^{2}-4\times 4076361\left(-1\right)}}{2\times 4076361}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4076361 for a, 4076360 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4076360±\sqrt{16616710849600-4\times 4076361\left(-1\right)}}{2\times 4076361}
Square 4076360.
x=\frac{-4076360±\sqrt{16616710849600-16305444\left(-1\right)}}{2\times 4076361}
Multiply -4 times 4076361.
x=\frac{-4076360±\sqrt{16616710849600+16305444}}{2\times 4076361}
Multiply -16305444 times -1.
x=\frac{-4076360±\sqrt{16616727155044}}{2\times 4076361}
Add 16616710849600 to 16305444.
x=\frac{-4076360±4076362}{2\times 4076361}
Take the square root of 16616727155044.
x=\frac{-4076360±4076362}{8152722}
Multiply 2 times 4076361.
x=\frac{2}{8152722}
Now solve the equation x=\frac{-4076360±4076362}{8152722} when ± is plus. Add -4076360 to 4076362.
x=\frac{1}{4076361}
Reduce the fraction \frac{2}{8152722} to lowest terms by extracting and canceling out 2.
x=-\frac{8152722}{8152722}
Now solve the equation x=\frac{-4076360±4076362}{8152722} when ± is minus. Subtract 4076362 from -4076360.
x=-1
Divide -8152722 by 8152722.
x=\frac{1}{4076361} x=-1
The equation is now solved.
2019^{2}x^{2}+2018\times 2020x=1
Expand \left(2019x\right)^{2}.
4076361x^{2}+2018\times 2020x=1
Calculate 2019 to the power of 2 and get 4076361.
4076361x^{2}+4076360x=1
Multiply 2018 and 2020 to get 4076360.
\frac{4076361x^{2}+4076360x}{4076361}=\frac{1}{4076361}
Divide both sides by 4076361.
x^{2}+\frac{4076360}{4076361}x=\frac{1}{4076361}
Dividing by 4076361 undoes the multiplication by 4076361.
x^{2}+\frac{4076360}{4076361}x+\left(\frac{2038180}{4076361}\right)^{2}=\frac{1}{4076361}+\left(\frac{2038180}{4076361}\right)^{2}
Divide \frac{4076360}{4076361}, the coefficient of the x term, by 2 to get \frac{2038180}{4076361}. Then add the square of \frac{2038180}{4076361} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4076360}{4076361}x+\frac{4154177712400}{16616719002321}=\frac{1}{4076361}+\frac{4154177712400}{16616719002321}
Square \frac{2038180}{4076361} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4076360}{4076361}x+\frac{4154177712400}{16616719002321}=\frac{4154181788761}{16616719002321}
Add \frac{1}{4076361} to \frac{4154177712400}{16616719002321} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2038180}{4076361}\right)^{2}=\frac{4154181788761}{16616719002321}
Factor x^{2}+\frac{4076360}{4076361}x+\frac{4154177712400}{16616719002321}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2038180}{4076361}\right)^{2}}=\sqrt{\frac{4154181788761}{16616719002321}}
Take the square root of both sides of the equation.
x+\frac{2038180}{4076361}=\frac{2038181}{4076361} x+\frac{2038180}{4076361}=-\frac{2038181}{4076361}
Simplify.
x=\frac{1}{4076361} x=-1
Subtract \frac{2038180}{4076361} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}