Solve for y
y=\frac{5\sqrt{14}i}{2}+10\approx 10+9.354143467i
y=-\frac{5\sqrt{14}i}{2}+10\approx 10-9.354143467i
Share
Copied to clipboard
400-40y+y^{2}+y^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(20-y\right)^{2}.
400-40y+2y^{2}=25
Combine y^{2} and y^{2} to get 2y^{2}.
400-40y+2y^{2}-25=0
Subtract 25 from both sides.
375-40y+2y^{2}=0
Subtract 25 from 400 to get 375.
2y^{2}-40y+375=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 375}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -40 for b, and 375 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 375}}{2\times 2}
Square -40.
y=\frac{-\left(-40\right)±\sqrt{1600-8\times 375}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-40\right)±\sqrt{1600-3000}}{2\times 2}
Multiply -8 times 375.
y=\frac{-\left(-40\right)±\sqrt{-1400}}{2\times 2}
Add 1600 to -3000.
y=\frac{-\left(-40\right)±10\sqrt{14}i}{2\times 2}
Take the square root of -1400.
y=\frac{40±10\sqrt{14}i}{2\times 2}
The opposite of -40 is 40.
y=\frac{40±10\sqrt{14}i}{4}
Multiply 2 times 2.
y=\frac{40+10\sqrt{14}i}{4}
Now solve the equation y=\frac{40±10\sqrt{14}i}{4} when ± is plus. Add 40 to 10i\sqrt{14}.
y=\frac{5\sqrt{14}i}{2}+10
Divide 40+10i\sqrt{14} by 4.
y=\frac{-10\sqrt{14}i+40}{4}
Now solve the equation y=\frac{40±10\sqrt{14}i}{4} when ± is minus. Subtract 10i\sqrt{14} from 40.
y=-\frac{5\sqrt{14}i}{2}+10
Divide 40-10i\sqrt{14} by 4.
y=\frac{5\sqrt{14}i}{2}+10 y=-\frac{5\sqrt{14}i}{2}+10
The equation is now solved.
400-40y+y^{2}+y^{2}=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(20-y\right)^{2}.
400-40y+2y^{2}=25
Combine y^{2} and y^{2} to get 2y^{2}.
-40y+2y^{2}=25-400
Subtract 400 from both sides.
-40y+2y^{2}=-375
Subtract 400 from 25 to get -375.
2y^{2}-40y=-375
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2y^{2}-40y}{2}=-\frac{375}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{40}{2}\right)y=-\frac{375}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-20y=-\frac{375}{2}
Divide -40 by 2.
y^{2}-20y+\left(-10\right)^{2}=-\frac{375}{2}+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-20y+100=-\frac{375}{2}+100
Square -10.
y^{2}-20y+100=-\frac{175}{2}
Add -\frac{375}{2} to 100.
\left(y-10\right)^{2}=-\frac{175}{2}
Factor y^{2}-20y+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-10\right)^{2}}=\sqrt{-\frac{175}{2}}
Take the square root of both sides of the equation.
y-10=\frac{5\sqrt{14}i}{2} y-10=-\frac{5\sqrt{14}i}{2}
Simplify.
y=\frac{5\sqrt{14}i}{2}+10 y=-\frac{5\sqrt{14}i}{2}+10
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}