( 2,9 + 8 \frac { 1 } { 2 } ) : x = 21 - 15
Solve for x
x=1,9
Graph
Share
Copied to clipboard
2,9+\frac{8\times 2+1}{2}=x\times 21+x\left(-15\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2,9+\frac{16+1}{2}=x\times 21+x\left(-15\right)
Multiply 8 and 2 to get 16.
2,9+\frac{17}{2}=x\times 21+x\left(-15\right)
Add 16 and 1 to get 17.
\frac{29}{10}+\frac{17}{2}=x\times 21+x\left(-15\right)
Convert decimal number 2,9 to fraction \frac{29}{10}.
\frac{29}{10}+\frac{85}{10}=x\times 21+x\left(-15\right)
Least common multiple of 10 and 2 is 10. Convert \frac{29}{10} and \frac{17}{2} to fractions with denominator 10.
\frac{29+85}{10}=x\times 21+x\left(-15\right)
Since \frac{29}{10} and \frac{85}{10} have the same denominator, add them by adding their numerators.
\frac{114}{10}=x\times 21+x\left(-15\right)
Add 29 and 85 to get 114.
\frac{57}{5}=x\times 21+x\left(-15\right)
Reduce the fraction \frac{114}{10} to lowest terms by extracting and canceling out 2.
\frac{57}{5}=6x
Combine x\times 21 and x\left(-15\right) to get 6x.
6x=\frac{57}{5}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{57}{5}}{6}
Divide both sides by 6.
x=\frac{57}{5\times 6}
Express \frac{\frac{57}{5}}{6} as a single fraction.
x=\frac{57}{30}
Multiply 5 and 6 to get 30.
x=\frac{19}{10}
Reduce the fraction \frac{57}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}