Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

4z^{2}-12z+9=11z-19
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2z-3\right)^{2}.
4z^{2}-12z+9-11z=-19
Subtract 11z from both sides.
4z^{2}-23z+9=-19
Combine -12z and -11z to get -23z.
4z^{2}-23z+9+19=0
Add 19 to both sides.
4z^{2}-23z+28=0
Add 9 and 19 to get 28.
a+b=-23 ab=4\times 28=112
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4z^{2}+az+bz+28. To find a and b, set up a system to be solved.
-1,-112 -2,-56 -4,-28 -7,-16 -8,-14
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 112.
-1-112=-113 -2-56=-58 -4-28=-32 -7-16=-23 -8-14=-22
Calculate the sum for each pair.
a=-16 b=-7
The solution is the pair that gives sum -23.
\left(4z^{2}-16z\right)+\left(-7z+28\right)
Rewrite 4z^{2}-23z+28 as \left(4z^{2}-16z\right)+\left(-7z+28\right).
4z\left(z-4\right)-7\left(z-4\right)
Factor out 4z in the first and -7 in the second group.
\left(z-4\right)\left(4z-7\right)
Factor out common term z-4 by using distributive property.
z=4 z=\frac{7}{4}
To find equation solutions, solve z-4=0 and 4z-7=0.
4z^{2}-12z+9=11z-19
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2z-3\right)^{2}.
4z^{2}-12z+9-11z=-19
Subtract 11z from both sides.
4z^{2}-23z+9=-19
Combine -12z and -11z to get -23z.
4z^{2}-23z+9+19=0
Add 19 to both sides.
4z^{2}-23z+28=0
Add 9 and 19 to get 28.
z=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 4\times 28}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -23 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-23\right)±\sqrt{529-4\times 4\times 28}}{2\times 4}
Square -23.
z=\frac{-\left(-23\right)±\sqrt{529-16\times 28}}{2\times 4}
Multiply -4 times 4.
z=\frac{-\left(-23\right)±\sqrt{529-448}}{2\times 4}
Multiply -16 times 28.
z=\frac{-\left(-23\right)±\sqrt{81}}{2\times 4}
Add 529 to -448.
z=\frac{-\left(-23\right)±9}{2\times 4}
Take the square root of 81.
z=\frac{23±9}{2\times 4}
The opposite of -23 is 23.
z=\frac{23±9}{8}
Multiply 2 times 4.
z=\frac{32}{8}
Now solve the equation z=\frac{23±9}{8} when ± is plus. Add 23 to 9.
z=4
Divide 32 by 8.
z=\frac{14}{8}
Now solve the equation z=\frac{23±9}{8} when ± is minus. Subtract 9 from 23.
z=\frac{7}{4}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
z=4 z=\frac{7}{4}
The equation is now solved.
4z^{2}-12z+9=11z-19
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2z-3\right)^{2}.
4z^{2}-12z+9-11z=-19
Subtract 11z from both sides.
4z^{2}-23z+9=-19
Combine -12z and -11z to get -23z.
4z^{2}-23z=-19-9
Subtract 9 from both sides.
4z^{2}-23z=-28
Subtract 9 from -19 to get -28.
\frac{4z^{2}-23z}{4}=-\frac{28}{4}
Divide both sides by 4.
z^{2}-\frac{23}{4}z=-\frac{28}{4}
Dividing by 4 undoes the multiplication by 4.
z^{2}-\frac{23}{4}z=-7
Divide -28 by 4.
z^{2}-\frac{23}{4}z+\left(-\frac{23}{8}\right)^{2}=-7+\left(-\frac{23}{8}\right)^{2}
Divide -\frac{23}{4}, the coefficient of the x term, by 2 to get -\frac{23}{8}. Then add the square of -\frac{23}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{23}{4}z+\frac{529}{64}=-7+\frac{529}{64}
Square -\frac{23}{8} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{23}{4}z+\frac{529}{64}=\frac{81}{64}
Add -7 to \frac{529}{64}.
\left(z-\frac{23}{8}\right)^{2}=\frac{81}{64}
Factor z^{2}-\frac{23}{4}z+\frac{529}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{23}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Take the square root of both sides of the equation.
z-\frac{23}{8}=\frac{9}{8} z-\frac{23}{8}=-\frac{9}{8}
Simplify.
z=4 z=\frac{7}{4}
Add \frac{23}{8} to both sides of the equation.