Evaluate
\frac{\left(2x-a\right)\left(3x+2a\right)}{2}
Expand
\frac{ax}{2}+3x^{2}-a^{2}
Graph
Share
Copied to clipboard
\left(2x-a\right)\left(\frac{3x}{2}+\frac{2a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{2}{2}.
\left(2x-a\right)\times \frac{3x+2a}{2}
Since \frac{3x}{2} and \frac{2a}{2} have the same denominator, add them by adding their numerators.
\frac{\left(2x-a\right)\left(3x+2a\right)}{2}
Express \left(2x-a\right)\times \frac{3x+2a}{2} as a single fraction.
\frac{6x^{2}+4xa-3ax-2a^{2}}{2}
Apply the distributive property by multiplying each term of 2x-a by each term of 3x+2a.
\frac{6x^{2}+xa-2a^{2}}{2}
Combine 4xa and -3ax to get xa.
\left(2x-a\right)\left(\frac{3x}{2}+\frac{2a}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{2}{2}.
\left(2x-a\right)\times \frac{3x+2a}{2}
Since \frac{3x}{2} and \frac{2a}{2} have the same denominator, add them by adding their numerators.
\frac{\left(2x-a\right)\left(3x+2a\right)}{2}
Express \left(2x-a\right)\times \frac{3x+2a}{2} as a single fraction.
\frac{6x^{2}+4xa-3ax-2a^{2}}{2}
Apply the distributive property by multiplying each term of 2x-a by each term of 3x+2a.
\frac{6x^{2}+xa-2a^{2}}{2}
Combine 4xa and -3ax to get xa.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}