Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+10x-40x-25-\left(6x+5\right)\left(6x-5\right)
Apply the distributive property by multiplying each term of 2x-5 by each term of 8x+5.
16x^{2}-30x-25-\left(6x+5\right)\left(6x-5\right)
Combine 10x and -40x to get -30x.
16x^{2}-30x-25-\left(\left(6x\right)^{2}-5^{2}\right)
Consider \left(6x+5\right)\left(6x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-30x-25-\left(6^{2}x^{2}-5^{2}\right)
Expand \left(6x\right)^{2}.
16x^{2}-30x-25-\left(36x^{2}-5^{2}\right)
Calculate 6 to the power of 2 and get 36.
16x^{2}-30x-25-\left(36x^{2}-25\right)
Calculate 5 to the power of 2 and get 25.
16x^{2}-30x-25-36x^{2}-\left(-25\right)
To find the opposite of 36x^{2}-25, find the opposite of each term.
16x^{2}-30x-25-36x^{2}+25
The opposite of -25 is 25.
-20x^{2}-30x-25+25
Combine 16x^{2} and -36x^{2} to get -20x^{2}.
-20x^{2}-30x
Add -25 and 25 to get 0.
16x^{2}+10x-40x-25-\left(6x+5\right)\left(6x-5\right)
Apply the distributive property by multiplying each term of 2x-5 by each term of 8x+5.
16x^{2}-30x-25-\left(6x+5\right)\left(6x-5\right)
Combine 10x and -40x to get -30x.
16x^{2}-30x-25-\left(\left(6x\right)^{2}-5^{2}\right)
Consider \left(6x+5\right)\left(6x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
16x^{2}-30x-25-\left(6^{2}x^{2}-5^{2}\right)
Expand \left(6x\right)^{2}.
16x^{2}-30x-25-\left(36x^{2}-5^{2}\right)
Calculate 6 to the power of 2 and get 36.
16x^{2}-30x-25-\left(36x^{2}-25\right)
Calculate 5 to the power of 2 and get 25.
16x^{2}-30x-25-36x^{2}-\left(-25\right)
To find the opposite of 36x^{2}-25, find the opposite of each term.
16x^{2}-30x-25-36x^{2}+25
The opposite of -25 is 25.
-20x^{2}-30x-25+25
Combine 16x^{2} and -36x^{2} to get -20x^{2}.
-20x^{2}-30x
Add -25 and 25 to get 0.