Solve for x (complex solution)
x=\frac{-11+\sqrt{479}i}{40}\approx -0.275+0.547151716i
x=\frac{-\sqrt{479}i-11}{40}\approx -0.275-0.547151716i
Graph
Share
Copied to clipboard
24x^{2}-50x-25=\left(3+10x\right)^{2}+11\left(2x-1\right)^{2}
Use the distributive property to multiply 2x-5 by 12x+5 and combine like terms.
24x^{2}-50x-25=9+60x+100x^{2}+11\left(2x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+10x\right)^{2}.
24x^{2}-50x-25=9+60x+100x^{2}+11\left(4x^{2}-4x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
24x^{2}-50x-25=9+60x+100x^{2}+44x^{2}-44x+11
Use the distributive property to multiply 11 by 4x^{2}-4x+1.
24x^{2}-50x-25=9+60x+144x^{2}-44x+11
Combine 100x^{2} and 44x^{2} to get 144x^{2}.
24x^{2}-50x-25=9+16x+144x^{2}+11
Combine 60x and -44x to get 16x.
24x^{2}-50x-25=20+16x+144x^{2}
Add 9 and 11 to get 20.
24x^{2}-50x-25-20=16x+144x^{2}
Subtract 20 from both sides.
24x^{2}-50x-45=16x+144x^{2}
Subtract 20 from -25 to get -45.
24x^{2}-50x-45-16x=144x^{2}
Subtract 16x from both sides.
24x^{2}-66x-45=144x^{2}
Combine -50x and -16x to get -66x.
24x^{2}-66x-45-144x^{2}=0
Subtract 144x^{2} from both sides.
-120x^{2}-66x-45=0
Combine 24x^{2} and -144x^{2} to get -120x^{2}.
x=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\left(-120\right)\left(-45\right)}}{2\left(-120\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -120 for a, -66 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-66\right)±\sqrt{4356-4\left(-120\right)\left(-45\right)}}{2\left(-120\right)}
Square -66.
x=\frac{-\left(-66\right)±\sqrt{4356+480\left(-45\right)}}{2\left(-120\right)}
Multiply -4 times -120.
x=\frac{-\left(-66\right)±\sqrt{4356-21600}}{2\left(-120\right)}
Multiply 480 times -45.
x=\frac{-\left(-66\right)±\sqrt{-17244}}{2\left(-120\right)}
Add 4356 to -21600.
x=\frac{-\left(-66\right)±6\sqrt{479}i}{2\left(-120\right)}
Take the square root of -17244.
x=\frac{66±6\sqrt{479}i}{2\left(-120\right)}
The opposite of -66 is 66.
x=\frac{66±6\sqrt{479}i}{-240}
Multiply 2 times -120.
x=\frac{66+6\sqrt{479}i}{-240}
Now solve the equation x=\frac{66±6\sqrt{479}i}{-240} when ± is plus. Add 66 to 6i\sqrt{479}.
x=\frac{-\sqrt{479}i-11}{40}
Divide 66+6i\sqrt{479} by -240.
x=\frac{-6\sqrt{479}i+66}{-240}
Now solve the equation x=\frac{66±6\sqrt{479}i}{-240} when ± is minus. Subtract 6i\sqrt{479} from 66.
x=\frac{-11+\sqrt{479}i}{40}
Divide 66-6i\sqrt{479} by -240.
x=\frac{-\sqrt{479}i-11}{40} x=\frac{-11+\sqrt{479}i}{40}
The equation is now solved.
24x^{2}-50x-25=\left(3+10x\right)^{2}+11\left(2x-1\right)^{2}
Use the distributive property to multiply 2x-5 by 12x+5 and combine like terms.
24x^{2}-50x-25=9+60x+100x^{2}+11\left(2x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+10x\right)^{2}.
24x^{2}-50x-25=9+60x+100x^{2}+11\left(4x^{2}-4x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
24x^{2}-50x-25=9+60x+100x^{2}+44x^{2}-44x+11
Use the distributive property to multiply 11 by 4x^{2}-4x+1.
24x^{2}-50x-25=9+60x+144x^{2}-44x+11
Combine 100x^{2} and 44x^{2} to get 144x^{2}.
24x^{2}-50x-25=9+16x+144x^{2}+11
Combine 60x and -44x to get 16x.
24x^{2}-50x-25=20+16x+144x^{2}
Add 9 and 11 to get 20.
24x^{2}-50x-25-16x=20+144x^{2}
Subtract 16x from both sides.
24x^{2}-66x-25=20+144x^{2}
Combine -50x and -16x to get -66x.
24x^{2}-66x-25-144x^{2}=20
Subtract 144x^{2} from both sides.
-120x^{2}-66x-25=20
Combine 24x^{2} and -144x^{2} to get -120x^{2}.
-120x^{2}-66x=20+25
Add 25 to both sides.
-120x^{2}-66x=45
Add 20 and 25 to get 45.
\frac{-120x^{2}-66x}{-120}=\frac{45}{-120}
Divide both sides by -120.
x^{2}+\left(-\frac{66}{-120}\right)x=\frac{45}{-120}
Dividing by -120 undoes the multiplication by -120.
x^{2}+\frac{11}{20}x=\frac{45}{-120}
Reduce the fraction \frac{-66}{-120} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{11}{20}x=-\frac{3}{8}
Reduce the fraction \frac{45}{-120} to lowest terms by extracting and canceling out 15.
x^{2}+\frac{11}{20}x+\left(\frac{11}{40}\right)^{2}=-\frac{3}{8}+\left(\frac{11}{40}\right)^{2}
Divide \frac{11}{20}, the coefficient of the x term, by 2 to get \frac{11}{40}. Then add the square of \frac{11}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{20}x+\frac{121}{1600}=-\frac{3}{8}+\frac{121}{1600}
Square \frac{11}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{20}x+\frac{121}{1600}=-\frac{479}{1600}
Add -\frac{3}{8} to \frac{121}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{40}\right)^{2}=-\frac{479}{1600}
Factor x^{2}+\frac{11}{20}x+\frac{121}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{40}\right)^{2}}=\sqrt{-\frac{479}{1600}}
Take the square root of both sides of the equation.
x+\frac{11}{40}=\frac{\sqrt{479}i}{40} x+\frac{11}{40}=-\frac{\sqrt{479}i}{40}
Simplify.
x=\frac{-11+\sqrt{479}i}{40} x=\frac{-\sqrt{479}i-11}{40}
Subtract \frac{11}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}