Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-13x+15+\left(5-1\right)^{0}
Use the distributive property to multiply 2x-3 by x-5 and combine like terms.
2x^{2}-13x+15+4^{0}
Subtract 1 from 5 to get 4.
2x^{2}-13x+15+1
Calculate 4 to the power of 0 and get 1.
2x^{2}-13x+16
Add 15 and 1 to get 16.
factor(2x^{2}-13x+15+\left(5-1\right)^{0})
Use the distributive property to multiply 2x-3 by x-5 and combine like terms.
factor(2x^{2}-13x+15+4^{0})
Subtract 1 from 5 to get 4.
factor(2x^{2}-13x+15+1)
Calculate 4 to the power of 0 and get 1.
factor(2x^{2}-13x+16)
Add 15 and 1 to get 16.
2x^{2}-13x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 16}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 16}}{2\times 2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\times 16}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-13\right)±\sqrt{169-128}}{2\times 2}
Multiply -8 times 16.
x=\frac{-\left(-13\right)±\sqrt{41}}{2\times 2}
Add 169 to -128.
x=\frac{13±\sqrt{41}}{2\times 2}
The opposite of -13 is 13.
x=\frac{13±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}+13}{4}
Now solve the equation x=\frac{13±\sqrt{41}}{4} when ± is plus. Add 13 to \sqrt{41}.
x=\frac{13-\sqrt{41}}{4}
Now solve the equation x=\frac{13±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from 13.
2x^{2}-13x+16=2\left(x-\frac{\sqrt{41}+13}{4}\right)\left(x-\frac{13-\sqrt{41}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{13+\sqrt{41}}{4} for x_{1} and \frac{13-\sqrt{41}}{4} for x_{2}.