Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+9=3x-1-\left(x-1\right)-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=3x-1-x+1-3
To find the opposite of x-1, find the opposite of each term.
4x^{2}-12x+9=2x-1+1-3
Combine 3x and -x to get 2x.
4x^{2}-12x+9=2x-3
Add -1 and 1 to get 0.
4x^{2}-12x+9-2x=-3
Subtract 2x from both sides.
4x^{2}-14x+9=-3
Combine -12x and -2x to get -14x.
4x^{2}-14x+9+3=0
Add 3 to both sides.
4x^{2}-14x+12=0
Add 9 and 3 to get 12.
2x^{2}-7x+6=0
Divide both sides by 2.
a+b=-7 ab=2\times 6=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(2x^{2}-4x\right)+\left(-3x+6\right)
Rewrite 2x^{2}-7x+6 as \left(2x^{2}-4x\right)+\left(-3x+6\right).
2x\left(x-2\right)-3\left(x-2\right)
Factor out 2x in the first and -3 in the second group.
\left(x-2\right)\left(2x-3\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{3}{2}
To find equation solutions, solve x-2=0 and 2x-3=0.
4x^{2}-12x+9=3x-1-\left(x-1\right)-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=3x-1-x+1-3
To find the opposite of x-1, find the opposite of each term.
4x^{2}-12x+9=2x-1+1-3
Combine 3x and -x to get 2x.
4x^{2}-12x+9=2x-3
Add -1 and 1 to get 0.
4x^{2}-12x+9-2x=-3
Subtract 2x from both sides.
4x^{2}-14x+9=-3
Combine -12x and -2x to get -14x.
4x^{2}-14x+9+3=0
Add 3 to both sides.
4x^{2}-14x+12=0
Add 9 and 3 to get 12.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\times 12}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -14 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\times 12}}{2\times 4}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\times 12}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 4}
Multiply -16 times 12.
x=\frac{-\left(-14\right)±\sqrt{4}}{2\times 4}
Add 196 to -192.
x=\frac{-\left(-14\right)±2}{2\times 4}
Take the square root of 4.
x=\frac{14±2}{2\times 4}
The opposite of -14 is 14.
x=\frac{14±2}{8}
Multiply 2 times 4.
x=\frac{16}{8}
Now solve the equation x=\frac{14±2}{8} when ± is plus. Add 14 to 2.
x=2
Divide 16 by 8.
x=\frac{12}{8}
Now solve the equation x=\frac{14±2}{8} when ± is minus. Subtract 2 from 14.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=2 x=\frac{3}{2}
The equation is now solved.
4x^{2}-12x+9=3x-1-\left(x-1\right)-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=3x-1-x+1-3
To find the opposite of x-1, find the opposite of each term.
4x^{2}-12x+9=2x-1+1-3
Combine 3x and -x to get 2x.
4x^{2}-12x+9=2x-3
Add -1 and 1 to get 0.
4x^{2}-12x+9-2x=-3
Subtract 2x from both sides.
4x^{2}-14x+9=-3
Combine -12x and -2x to get -14x.
4x^{2}-14x=-3-9
Subtract 9 from both sides.
4x^{2}-14x=-12
Subtract 9 from -3 to get -12.
\frac{4x^{2}-14x}{4}=-\frac{12}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{14}{4}\right)x=-\frac{12}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{7}{2}x=-\frac{12}{4}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x=-3
Divide -12 by 4.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-3+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-3+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{1}{16}
Add -3 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{1}{4} x-\frac{7}{4}=-\frac{1}{4}
Simplify.
x=2 x=\frac{3}{2}
Add \frac{7}{4} to both sides of the equation.