( 2 x - 1 ) d x + 63 y + 9 d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{63y}{2x^{2}-x+9y}\text{, }&y\neq -\frac{x\left(2x-1\right)}{9}\\d\in \mathrm{C}\text{, }&\left(x=\frac{1}{2}\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{63y}{2x^{2}-x+9y}\text{, }&y\neq -\frac{x\left(2x-1\right)}{9}\\d\in \mathrm{R}\text{, }&\left(x=\frac{1}{2}\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-504y-72dy\right)}+d}{4d}\text{; }x=\frac{-\sqrt{d\left(d-504y-72dy\right)}+d}{4d}\text{, }&d\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-504y-72dy\right)}+d}{4d}\text{; }x=\frac{-\sqrt{d\left(d-504y-72dy\right)}+d}{4d}\text{, }&\left(y<\frac{1}{72}\text{ and }d\geq \frac{504y}{1-72y}\text{ and }d>0\right)\text{ or }\left(d\leq \frac{504y}{1-72y}\text{ and }y>\frac{1}{72}\text{ and }d>0\right)\text{ or }\left(d\geq \frac{504y}{1-72y}\text{ and }y\geq \frac{1}{72}\text{ and }d<0\right)\text{ or }\left(y=\frac{1}{72}\text{ and }d<0\right)\text{ or }\left(y\leq \frac{1}{72}\text{ and }d\leq \frac{504y}{1-72y}\text{ and }d<0\right)\text{ or }\left(y\neq 0\text{ and }d=\frac{504y}{1-72y}\text{ and }y\neq \frac{1}{72}\right)\\x\in \mathrm{R}\text{, }&y=0\text{ and }d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2xd-d\right)x+63y+9dy=0
Use the distributive property to multiply 2x-1 by d.
2dx^{2}-dx+63y+9dy=0
Use the distributive property to multiply 2xd-d by x.
2dx^{2}-dx+9dy=-63y
Subtract 63y from both sides. Anything subtracted from zero gives its negation.
\left(2x^{2}-x+9y\right)d=-63y
Combine all terms containing d.
\frac{\left(2x^{2}-x+9y\right)d}{2x^{2}-x+9y}=-\frac{63y}{2x^{2}-x+9y}
Divide both sides by 2x^{2}-x+9y.
d=-\frac{63y}{2x^{2}-x+9y}
Dividing by 2x^{2}-x+9y undoes the multiplication by 2x^{2}-x+9y.
\left(2xd-d\right)x+63y+9dy=0
Use the distributive property to multiply 2x-1 by d.
2dx^{2}-dx+63y+9dy=0
Use the distributive property to multiply 2xd-d by x.
2dx^{2}-dx+9dy=-63y
Subtract 63y from both sides. Anything subtracted from zero gives its negation.
\left(2x^{2}-x+9y\right)d=-63y
Combine all terms containing d.
\frac{\left(2x^{2}-x+9y\right)d}{2x^{2}-x+9y}=-\frac{63y}{2x^{2}-x+9y}
Divide both sides by 2x^{2}-x+9y.
d=-\frac{63y}{2x^{2}-x+9y}
Dividing by 2x^{2}-x+9y undoes the multiplication by 2x^{2}-x+9y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}