Solve for x
x=\frac{y+3}{2\left(y+2\right)}
y\neq -2
Solve for y
y=-\frac{4x-3}{2x-1}
x\neq \frac{1}{2}
Graph
Share
Copied to clipboard
2xy+6x-y-3=2x
Use the distributive property to multiply 2x-1 by y+3.
2xy+6x-y-3-2x=0
Subtract 2x from both sides.
2xy+4x-y-3=0
Combine 6x and -2x to get 4x.
2xy+4x-3=y
Add y to both sides. Anything plus zero gives itself.
2xy+4x=y+3
Add 3 to both sides.
\left(2y+4\right)x=y+3
Combine all terms containing x.
\frac{\left(2y+4\right)x}{2y+4}=\frac{y+3}{2y+4}
Divide both sides by 2y+4.
x=\frac{y+3}{2y+4}
Dividing by 2y+4 undoes the multiplication by 2y+4.
x=\frac{y+3}{2\left(y+2\right)}
Divide y+3 by 2y+4.
2xy+6x-y-3=2x
Use the distributive property to multiply 2x-1 by y+3.
2xy-y-3=2x-6x
Subtract 6x from both sides.
2xy-y-3=-4x
Combine 2x and -6x to get -4x.
2xy-y=-4x+3
Add 3 to both sides.
\left(2x-1\right)y=-4x+3
Combine all terms containing y.
\left(2x-1\right)y=3-4x
The equation is in standard form.
\frac{\left(2x-1\right)y}{2x-1}=\frac{3-4x}{2x-1}
Divide both sides by 2x-1.
y=\frac{3-4x}{2x-1}
Dividing by 2x-1 undoes the multiplication by 2x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}