Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x-12x^{2}-3=\left(3x-5\right)\left(10-6x\right)
Use the distributive property to multiply 2x-1 by 3-6x and combine like terms.
12x-12x^{2}-3=60x-18x^{2}-50
Use the distributive property to multiply 3x-5 by 10-6x and combine like terms.
12x-12x^{2}-3-60x=-18x^{2}-50
Subtract 60x from both sides.
-48x-12x^{2}-3=-18x^{2}-50
Combine 12x and -60x to get -48x.
-48x-12x^{2}-3+18x^{2}=-50
Add 18x^{2} to both sides.
-48x+6x^{2}-3=-50
Combine -12x^{2} and 18x^{2} to get 6x^{2}.
-48x+6x^{2}-3+50=0
Add 50 to both sides.
-48x+6x^{2}+47=0
Add -3 and 50 to get 47.
6x^{2}-48x+47=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 6\times 47}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -48 for b, and 47 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 6\times 47}}{2\times 6}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-24\times 47}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-48\right)±\sqrt{2304-1128}}{2\times 6}
Multiply -24 times 47.
x=\frac{-\left(-48\right)±\sqrt{1176}}{2\times 6}
Add 2304 to -1128.
x=\frac{-\left(-48\right)±14\sqrt{6}}{2\times 6}
Take the square root of 1176.
x=\frac{48±14\sqrt{6}}{2\times 6}
The opposite of -48 is 48.
x=\frac{48±14\sqrt{6}}{12}
Multiply 2 times 6.
x=\frac{14\sqrt{6}+48}{12}
Now solve the equation x=\frac{48±14\sqrt{6}}{12} when ± is plus. Add 48 to 14\sqrt{6}.
x=\frac{7\sqrt{6}}{6}+4
Divide 48+14\sqrt{6} by 12.
x=\frac{48-14\sqrt{6}}{12}
Now solve the equation x=\frac{48±14\sqrt{6}}{12} when ± is minus. Subtract 14\sqrt{6} from 48.
x=-\frac{7\sqrt{6}}{6}+4
Divide 48-14\sqrt{6} by 12.
x=\frac{7\sqrt{6}}{6}+4 x=-\frac{7\sqrt{6}}{6}+4
The equation is now solved.
12x-12x^{2}-3=\left(3x-5\right)\left(10-6x\right)
Use the distributive property to multiply 2x-1 by 3-6x and combine like terms.
12x-12x^{2}-3=60x-18x^{2}-50
Use the distributive property to multiply 3x-5 by 10-6x and combine like terms.
12x-12x^{2}-3-60x=-18x^{2}-50
Subtract 60x from both sides.
-48x-12x^{2}-3=-18x^{2}-50
Combine 12x and -60x to get -48x.
-48x-12x^{2}-3+18x^{2}=-50
Add 18x^{2} to both sides.
-48x+6x^{2}-3=-50
Combine -12x^{2} and 18x^{2} to get 6x^{2}.
-48x+6x^{2}=-50+3
Add 3 to both sides.
-48x+6x^{2}=-47
Add -50 and 3 to get -47.
6x^{2}-48x=-47
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-48x}{6}=-\frac{47}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{48}{6}\right)x=-\frac{47}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-8x=-\frac{47}{6}
Divide -48 by 6.
x^{2}-8x+\left(-4\right)^{2}=-\frac{47}{6}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{47}{6}+16
Square -4.
x^{2}-8x+16=\frac{49}{6}
Add -\frac{47}{6} to 16.
\left(x-4\right)^{2}=\frac{49}{6}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{49}{6}}
Take the square root of both sides of the equation.
x-4=\frac{7\sqrt{6}}{6} x-4=-\frac{7\sqrt{6}}{6}
Simplify.
x=\frac{7\sqrt{6}}{6}+4 x=-\frac{7\sqrt{6}}{6}+4
Add 4 to both sides of the equation.