Solve for x
x=-\frac{1}{2}=-0.5
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\left(2x\right)^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Expand \left(2x\right)^{2}.
4x^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Calculate 2 to the power of 2 and get 4.
4x^{2}-1+2x^{2}+3x-2=x\left(3+x\right)-\frac{7}{4}
Use the distributive property to multiply 2x-1 by x+2 and combine like terms.
6x^{2}-1+3x-2=x\left(3+x\right)-\frac{7}{4}
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-3+3x=x\left(3+x\right)-\frac{7}{4}
Subtract 2 from -1 to get -3.
6x^{2}-3+3x=3x+x^{2}-\frac{7}{4}
Use the distributive property to multiply x by 3+x.
6x^{2}-3+3x-3x=x^{2}-\frac{7}{4}
Subtract 3x from both sides.
6x^{2}-3=x^{2}-\frac{7}{4}
Combine 3x and -3x to get 0.
6x^{2}-3-x^{2}=-\frac{7}{4}
Subtract x^{2} from both sides.
5x^{2}-3=-\frac{7}{4}
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}=-\frac{7}{4}+3
Add 3 to both sides.
5x^{2}=\frac{5}{4}
Add -\frac{7}{4} and 3 to get \frac{5}{4}.
x^{2}=\frac{\frac{5}{4}}{5}
Divide both sides by 5.
x^{2}=\frac{5}{4\times 5}
Express \frac{\frac{5}{4}}{5} as a single fraction.
x^{2}=\frac{1}{4}
Cancel out 5 in both numerator and denominator.
x=\frac{1}{2} x=-\frac{1}{2}
Take the square root of both sides of the equation.
\left(2x\right)^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Expand \left(2x\right)^{2}.
4x^{2}-1+\left(2x-1\right)\left(x+2\right)=x\left(3+x\right)-\frac{7}{4}
Calculate 2 to the power of 2 and get 4.
4x^{2}-1+2x^{2}+3x-2=x\left(3+x\right)-\frac{7}{4}
Use the distributive property to multiply 2x-1 by x+2 and combine like terms.
6x^{2}-1+3x-2=x\left(3+x\right)-\frac{7}{4}
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
6x^{2}-3+3x=x\left(3+x\right)-\frac{7}{4}
Subtract 2 from -1 to get -3.
6x^{2}-3+3x=3x+x^{2}-\frac{7}{4}
Use the distributive property to multiply x by 3+x.
6x^{2}-3+3x-3x=x^{2}-\frac{7}{4}
Subtract 3x from both sides.
6x^{2}-3=x^{2}-\frac{7}{4}
Combine 3x and -3x to get 0.
6x^{2}-3-x^{2}=-\frac{7}{4}
Subtract x^{2} from both sides.
5x^{2}-3=-\frac{7}{4}
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}-3+\frac{7}{4}=0
Add \frac{7}{4} to both sides.
5x^{2}-\frac{5}{4}=0
Add -3 and \frac{7}{4} to get -\frac{5}{4}.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-\frac{5}{4}\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -\frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-\frac{5}{4}\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-\frac{5}{4}\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{25}}{2\times 5}
Multiply -20 times -\frac{5}{4}.
x=\frac{0±5}{2\times 5}
Take the square root of 25.
x=\frac{0±5}{10}
Multiply 2 times 5.
x=\frac{1}{2}
Now solve the equation x=\frac{0±5}{10} when ± is plus. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
x=-\frac{1}{2}
Now solve the equation x=\frac{0±5}{10} when ± is minus. Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
x=\frac{1}{2} x=-\frac{1}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}