Solve for x
x=-1
Graph
Share
Copied to clipboard
4x^{2}-1+3+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2x-1 by 1+2x and combine like terms.
4x^{2}+2+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Add -1 and 3 to get 2.
4x^{2}+2+2\left(4x^{2}+4x+1\right)=2\times \left(2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+2+8x^{2}+8x+2=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2 by 4x^{2}+4x+1.
12x^{2}+2+8x+2=2\times \left(2x\right)^{2}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4+8x=2\times \left(2x\right)^{2}
Add 2 and 2 to get 4.
12x^{2}+4+8x=2\times 2^{2}x^{2}
Expand \left(2x\right)^{2}.
12x^{2}+4+8x=2\times 4x^{2}
Calculate 2 to the power of 2 and get 4.
12x^{2}+4+8x=8x^{2}
Multiply 2 and 4 to get 8.
12x^{2}+4+8x-8x^{2}=0
Subtract 8x^{2} from both sides.
4x^{2}+4+8x=0
Combine 12x^{2} and -8x^{2} to get 4x^{2}.
x^{2}+1+2x=0
Divide both sides by 4.
x^{2}+2x+1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=1\times 1=1
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(x^{2}+x\right)+\left(x+1\right)
Rewrite x^{2}+2x+1 as \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Factor out x in x^{2}+x.
\left(x+1\right)\left(x+1\right)
Factor out common term x+1 by using distributive property.
\left(x+1\right)^{2}
Rewrite as a binomial square.
x=-1
To find equation solution, solve x+1=0.
4x^{2}-1+3+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2x-1 by 1+2x and combine like terms.
4x^{2}+2+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Add -1 and 3 to get 2.
4x^{2}+2+2\left(4x^{2}+4x+1\right)=2\times \left(2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+2+8x^{2}+8x+2=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2 by 4x^{2}+4x+1.
12x^{2}+2+8x+2=2\times \left(2x\right)^{2}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4+8x=2\times \left(2x\right)^{2}
Add 2 and 2 to get 4.
12x^{2}+4+8x=2\times 2^{2}x^{2}
Expand \left(2x\right)^{2}.
12x^{2}+4+8x=2\times 4x^{2}
Calculate 2 to the power of 2 and get 4.
12x^{2}+4+8x=8x^{2}
Multiply 2 and 4 to get 8.
12x^{2}+4+8x-8x^{2}=0
Subtract 8x^{2} from both sides.
4x^{2}+4+8x=0
Combine 12x^{2} and -8x^{2} to get 4x^{2}.
4x^{2}+8x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\times 4}}{2\times 4}
Square 8.
x=\frac{-8±\sqrt{64-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-8±\sqrt{64-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-8±\sqrt{0}}{2\times 4}
Add 64 to -64.
x=-\frac{8}{2\times 4}
Take the square root of 0.
x=-\frac{8}{8}
Multiply 2 times 4.
x=-1
Divide -8 by 8.
4x^{2}-1+3+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2x-1 by 1+2x and combine like terms.
4x^{2}+2+2\left(2x+1\right)^{2}=2\times \left(2x\right)^{2}
Add -1 and 3 to get 2.
4x^{2}+2+2\left(4x^{2}+4x+1\right)=2\times \left(2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+2+8x^{2}+8x+2=2\times \left(2x\right)^{2}
Use the distributive property to multiply 2 by 4x^{2}+4x+1.
12x^{2}+2+8x+2=2\times \left(2x\right)^{2}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4+8x=2\times \left(2x\right)^{2}
Add 2 and 2 to get 4.
12x^{2}+4+8x=2\times 2^{2}x^{2}
Expand \left(2x\right)^{2}.
12x^{2}+4+8x=2\times 4x^{2}
Calculate 2 to the power of 2 and get 4.
12x^{2}+4+8x=8x^{2}
Multiply 2 and 4 to get 8.
12x^{2}+4+8x-8x^{2}=0
Subtract 8x^{2} from both sides.
4x^{2}+4+8x=0
Combine 12x^{2} and -8x^{2} to get 4x^{2}.
4x^{2}+8x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+8x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{8}{4}x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+2x=-\frac{4}{4}
Divide 8 by 4.
x^{2}+2x=-1
Divide -4 by 4.
x^{2}+2x+1^{2}=-1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-1+1
Square 1.
x^{2}+2x+1=0
Add -1 to 1.
\left(x+1\right)^{2}=0
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+1=0 x+1=0
Simplify.
x=-1 x=-1
Subtract 1 from both sides of the equation.
x=-1
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}