Solve for x
x\leq -\frac{1}{2}
Graph
Share
Copied to clipboard
4x^{2}-4x+1\geq \left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1\geq 4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}-4x+1-4x^{2}\geq 12x+9
Subtract 4x^{2} from both sides.
-4x+1\geq 12x+9
Combine 4x^{2} and -4x^{2} to get 0.
-4x+1-12x\geq 9
Subtract 12x from both sides.
-16x+1\geq 9
Combine -4x and -12x to get -16x.
-16x\geq 9-1
Subtract 1 from both sides.
-16x\geq 8
Subtract 1 from 9 to get 8.
x\leq \frac{8}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x\leq -\frac{1}{2}
Reduce the fraction \frac{8}{-16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}