Solve for x
x=0
Graph
Share
Copied to clipboard
4x^{2}-4x+1=1-4x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1+4x=1
Add 4x to both sides.
4x^{2}+1=1
Combine -4x and 4x to get 0.
4x^{2}=1-1
Subtract 1 from both sides.
4x^{2}=0
Subtract 1 from 1 to get 0.
x^{2}=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
4x^{2}-4x+1=1-4x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-1=-4x
Subtract 1 from both sides.
4x^{2}-4x=-4x
Subtract 1 from 1 to get 0.
4x^{2}-4x+4x=0
Add 4x to both sides.
4x^{2}=0
Combine -4x and 4x to get 0.
x^{2}=0
Divide both sides by 4. Zero divided by any non-zero number gives zero.
x=\frac{0±\sqrt{0^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Take the square root of 0^{2}.
x=0
Divide 0 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}