Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+32x+64-25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+8\right)^{2}.
4x^{2}+32x+39=0
Subtract 25 from 64 to get 39.
a+b=32 ab=4\times 39=156
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+39. To find a and b, set up a system to be solved.
1,156 2,78 3,52 4,39 6,26 12,13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 156.
1+156=157 2+78=80 3+52=55 4+39=43 6+26=32 12+13=25
Calculate the sum for each pair.
a=6 b=26
The solution is the pair that gives sum 32.
\left(4x^{2}+6x\right)+\left(26x+39\right)
Rewrite 4x^{2}+32x+39 as \left(4x^{2}+6x\right)+\left(26x+39\right).
2x\left(2x+3\right)+13\left(2x+3\right)
Factor out 2x in the first and 13 in the second group.
\left(2x+3\right)\left(2x+13\right)
Factor out common term 2x+3 by using distributive property.
x=-\frac{3}{2} x=-\frac{13}{2}
To find equation solutions, solve 2x+3=0 and 2x+13=0.
4x^{2}+32x+64-25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+8\right)^{2}.
4x^{2}+32x+39=0
Subtract 25 from 64 to get 39.
x=\frac{-32±\sqrt{32^{2}-4\times 4\times 39}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 32 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 4\times 39}}{2\times 4}
Square 32.
x=\frac{-32±\sqrt{1024-16\times 39}}{2\times 4}
Multiply -4 times 4.
x=\frac{-32±\sqrt{1024-624}}{2\times 4}
Multiply -16 times 39.
x=\frac{-32±\sqrt{400}}{2\times 4}
Add 1024 to -624.
x=\frac{-32±20}{2\times 4}
Take the square root of 400.
x=\frac{-32±20}{8}
Multiply 2 times 4.
x=-\frac{12}{8}
Now solve the equation x=\frac{-32±20}{8} when ± is plus. Add -32 to 20.
x=-\frac{3}{2}
Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{52}{8}
Now solve the equation x=\frac{-32±20}{8} when ± is minus. Subtract 20 from -32.
x=-\frac{13}{2}
Reduce the fraction \frac{-52}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{3}{2} x=-\frac{13}{2}
The equation is now solved.
4x^{2}+32x+64-25=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+8\right)^{2}.
4x^{2}+32x+39=0
Subtract 25 from 64 to get 39.
4x^{2}+32x=-39
Subtract 39 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+32x}{4}=-\frac{39}{4}
Divide both sides by 4.
x^{2}+\frac{32}{4}x=-\frac{39}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+8x=-\frac{39}{4}
Divide 32 by 4.
x^{2}+8x+4^{2}=-\frac{39}{4}+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-\frac{39}{4}+16
Square 4.
x^{2}+8x+16=\frac{25}{4}
Add -\frac{39}{4} to 16.
\left(x+4\right)^{2}=\frac{25}{4}
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+4=\frac{5}{2} x+4=-\frac{5}{2}
Simplify.
x=-\frac{3}{2} x=-\frac{13}{2}
Subtract 4 from both sides of the equation.