Solve for x
x=\frac{\sqrt{79}-7}{4}\approx 0.472048604
x=\frac{-\sqrt{79}-7}{4}\approx -3.972048604
Graph
Share
Copied to clipboard
4\left(2x+7\right)x=15
Multiply both sides of the equation by 12, the least common multiple of 3,4.
\left(8x+28\right)x=15
Use the distributive property to multiply 4 by 2x+7.
8x^{2}+28x=15
Use the distributive property to multiply 8x+28 by x.
8x^{2}+28x-15=0
Subtract 15 from both sides.
x=\frac{-28±\sqrt{28^{2}-4\times 8\left(-15\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 28 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 8\left(-15\right)}}{2\times 8}
Square 28.
x=\frac{-28±\sqrt{784-32\left(-15\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-28±\sqrt{784+480}}{2\times 8}
Multiply -32 times -15.
x=\frac{-28±\sqrt{1264}}{2\times 8}
Add 784 to 480.
x=\frac{-28±4\sqrt{79}}{2\times 8}
Take the square root of 1264.
x=\frac{-28±4\sqrt{79}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{79}-28}{16}
Now solve the equation x=\frac{-28±4\sqrt{79}}{16} when ± is plus. Add -28 to 4\sqrt{79}.
x=\frac{\sqrt{79}-7}{4}
Divide -28+4\sqrt{79} by 16.
x=\frac{-4\sqrt{79}-28}{16}
Now solve the equation x=\frac{-28±4\sqrt{79}}{16} when ± is minus. Subtract 4\sqrt{79} from -28.
x=\frac{-\sqrt{79}-7}{4}
Divide -28-4\sqrt{79} by 16.
x=\frac{\sqrt{79}-7}{4} x=\frac{-\sqrt{79}-7}{4}
The equation is now solved.
4\left(2x+7\right)x=15
Multiply both sides of the equation by 12, the least common multiple of 3,4.
\left(8x+28\right)x=15
Use the distributive property to multiply 4 by 2x+7.
8x^{2}+28x=15
Use the distributive property to multiply 8x+28 by x.
\frac{8x^{2}+28x}{8}=\frac{15}{8}
Divide both sides by 8.
x^{2}+\frac{28}{8}x=\frac{15}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{7}{2}x=\frac{15}{8}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\frac{15}{8}+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{15}{8}+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{79}{16}
Add \frac{15}{8} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{4}\right)^{2}=\frac{79}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{79}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{79}}{4} x+\frac{7}{4}=-\frac{\sqrt{79}}{4}
Simplify.
x=\frac{\sqrt{79}-7}{4} x=\frac{-\sqrt{79}-7}{4}
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}