Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Use the distributive property to multiply 2x+5 by x-1 and combine like terms.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Use the distributive property to multiply x-1 by x+5 and combine like terms.
2x^{2}+3x-5-x^{2}-4x+5=0
To find the opposite of x^{2}+4x-5, find the opposite of each term.
x^{2}+3x-5-4x+5=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-x-5+5=0
Combine 3x and -4x to get -x.
x^{2}-x=0
Add -5 and 5 to get 0.
x\left(x-1\right)=0
Factor out x.
x=0 x=1
To find equation solutions, solve x=0 and x-1=0.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Use the distributive property to multiply 2x+5 by x-1 and combine like terms.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Use the distributive property to multiply x-1 by x+5 and combine like terms.
2x^{2}+3x-5-x^{2}-4x+5=0
To find the opposite of x^{2}+4x-5, find the opposite of each term.
x^{2}+3x-5-4x+5=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-x-5+5=0
Combine 3x and -4x to get -x.
x^{2}-x=0
Add -5 and 5 to get 0.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
Take the square root of 1.
x=\frac{1±1}{2}
The opposite of -1 is 1.
x=\frac{2}{2}
Now solve the equation x=\frac{1±1}{2} when ± is plus. Add 1 to 1.
x=1
Divide 2 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{1±1}{2} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by 2.
x=1 x=0
The equation is now solved.
2x^{2}+3x-5-\left(x-1\right)\left(x+5\right)=0
Use the distributive property to multiply 2x+5 by x-1 and combine like terms.
2x^{2}+3x-5-\left(x^{2}+4x-5\right)=0
Use the distributive property to multiply x-1 by x+5 and combine like terms.
2x^{2}+3x-5-x^{2}-4x+5=0
To find the opposite of x^{2}+4x-5, find the opposite of each term.
x^{2}+3x-5-4x+5=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-x-5+5=0
Combine 3x and -4x to get -x.
x^{2}-x=0
Add -5 and 5 to get 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Simplify.
x=1 x=0
Add \frac{1}{2} to both sides of the equation.