Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}+16x+16+10x-25=26x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+26x+16-25=26x
Combine 16x and 10x to get 26x.
3x^{2}+26x-9=26x
Subtract 25 from 16 to get -9.
3x^{2}+26x-9-26x=0
Subtract 26x from both sides.
3x^{2}-9=0
Combine 26x and -26x to get 0.
3x^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
x^{2}=\frac{9}{3}
Divide both sides by 3.
x^{2}=3
Divide 9 by 3 to get 3.
x=\sqrt{3} x=-\sqrt{3}
Take the square root of both sides of the equation.
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}+16x+16+10x-25=26x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+26x+16-25=26x
Combine 16x and 10x to get 26x.
3x^{2}+26x-9=26x
Subtract 25 from 16 to get -9.
3x^{2}+26x-9-26x=0
Subtract 26x from both sides.
3x^{2}-9=0
Combine 26x and -26x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{108}}{2\times 3}
Multiply -12 times -9.
x=\frac{0±6\sqrt{3}}{2\times 3}
Take the square root of 108.
x=\frac{0±6\sqrt{3}}{6}
Multiply 2 times 3.
x=\sqrt{3}
Now solve the equation x=\frac{0±6\sqrt{3}}{6} when ± is plus.
x=-\sqrt{3}
Now solve the equation x=\frac{0±6\sqrt{3}}{6} when ± is minus.
x=\sqrt{3} x=-\sqrt{3}
The equation is now solved.