Solve for x
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
Graph
Share
Copied to clipboard
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}+16x+16+10x-25=26x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+26x+16-25=26x
Combine 16x and 10x to get 26x.
3x^{2}+26x-9=26x
Subtract 25 from 16 to get -9.
3x^{2}+26x-9-26x=0
Subtract 26x from both sides.
3x^{2}-9=0
Combine 26x and -26x to get 0.
3x^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
x^{2}=\frac{9}{3}
Divide both sides by 3.
x^{2}=3
Divide 9 by 3 to get 3.
x=\sqrt{3} x=-\sqrt{3}
Take the square root of both sides of the equation.
4x^{2}+16x+16-\left(x-5\right)^{2}=26x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
4x^{2}+16x+16-\left(x^{2}-10x+25\right)=26x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+16x+16-x^{2}+10x-25=26x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}+16x+16+10x-25=26x
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+26x+16-25=26x
Combine 16x and 10x to get 26x.
3x^{2}+26x-9=26x
Subtract 25 from 16 to get -9.
3x^{2}+26x-9-26x=0
Subtract 26x from both sides.
3x^{2}-9=0
Combine 26x and -26x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-9\right)}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{108}}{2\times 3}
Multiply -12 times -9.
x=\frac{0±6\sqrt{3}}{2\times 3}
Take the square root of 108.
x=\frac{0±6\sqrt{3}}{6}
Multiply 2 times 3.
x=\sqrt{3}
Now solve the equation x=\frac{0±6\sqrt{3}}{6} when ± is plus.
x=-\sqrt{3}
Now solve the equation x=\frac{0±6\sqrt{3}}{6} when ± is minus.
x=\sqrt{3} x=-\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}