Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{4x^{2}+12x-c+9}{2x+3}\text{, }&x\neq -\frac{3}{2}\\b\in \mathrm{C}\text{, }&c=0\text{ and }x=-\frac{3}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{4x^{2}+12x-c+9}{2x+3}\text{, }&x\neq -\frac{3}{2}\\b\in \mathrm{R}\text{, }&c=0\text{ and }x=-\frac{3}{2}\end{matrix}\right.
Solve for c
c=\left(2x+3\right)\left(2x+b+3\right)
Graph
Share
Copied to clipboard
4x^{2}+12x+2xb+9+3b-c=0
Use the distributive property to multiply 2x+3 by 2x+3+b and combine like terms.
12x+2xb+9+3b-c=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
2xb+9+3b-c=-4x^{2}-12x
Subtract 12x from both sides.
2xb+3b-c=-4x^{2}-12x-9
Subtract 9 from both sides.
2xb+3b=-4x^{2}-12x-9+c
Add c to both sides.
\left(2x+3\right)b=-4x^{2}-12x-9+c
Combine all terms containing b.
\left(2x+3\right)b=-4x^{2}-12x+c-9
The equation is in standard form.
\frac{\left(2x+3\right)b}{2x+3}=\frac{-\left(2x+3\right)^{2}+c}{2x+3}
Divide both sides by 2x+3.
b=\frac{-\left(2x+3\right)^{2}+c}{2x+3}
Dividing by 2x+3 undoes the multiplication by 2x+3.
b=\frac{-4x^{2}-12x+c-9}{2x+3}
Divide c-\left(2x+3\right)^{2} by 2x+3.
4x^{2}+12x+2xb+9+3b-c=0
Use the distributive property to multiply 2x+3 by 2x+3+b and combine like terms.
12x+2xb+9+3b-c=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
2xb+9+3b-c=-4x^{2}-12x
Subtract 12x from both sides.
2xb+3b-c=-4x^{2}-12x-9
Subtract 9 from both sides.
2xb+3b=-4x^{2}-12x-9+c
Add c to both sides.
\left(2x+3\right)b=-4x^{2}-12x-9+c
Combine all terms containing b.
\left(2x+3\right)b=-4x^{2}-12x+c-9
The equation is in standard form.
\frac{\left(2x+3\right)b}{2x+3}=\frac{-\left(2x+3\right)^{2}+c}{2x+3}
Divide both sides by 2x+3.
b=\frac{-\left(2x+3\right)^{2}+c}{2x+3}
Dividing by 2x+3 undoes the multiplication by 2x+3.
b=\frac{-4x^{2}-12x+c-9}{2x+3}
Divide c-\left(2x+3\right)^{2} by 2x+3.
4x^{2}+12x+2xb+9+3b-c=0
Use the distributive property to multiply 2x+3 by 2x+3+b and combine like terms.
12x+2xb+9+3b-c=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
2xb+9+3b-c=-4x^{2}-12x
Subtract 12x from both sides.
9+3b-c=-4x^{2}-12x-2xb
Subtract 2xb from both sides.
3b-c=-4x^{2}-12x-2xb-9
Subtract 9 from both sides.
-c=-4x^{2}-12x-2xb-9-3b
Subtract 3b from both sides.
-c=-4x^{2}-2bx-12x-3b-9
The equation is in standard form.
\frac{-c}{-1}=-\frac{\left(2x+3\right)\left(2x+b+3\right)}{-1}
Divide both sides by -1.
c=-\frac{\left(2x+3\right)\left(2x+b+3\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
c=\left(2x+3\right)\left(2x+b+3\right)
Divide -\left(3+2x\right)\left(3+2x+b\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}