Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
4x^{2}+12x+9-6x-4=2x\left(1+2x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+6x+9-4=2x\left(1+2x\right)
Combine 12x and -6x to get 6x.
4x^{2}+6x+5=2x\left(1+2x\right)
Subtract 4 from 9 to get 5.
4x^{2}+6x+5=2x+4x^{2}
Use the distributive property to multiply 2x by 1+2x.
4x^{2}+6x+5-2x=4x^{2}
Subtract 2x from both sides.
4x^{2}+4x+5=4x^{2}
Combine 6x and -2x to get 4x.
4x^{2}+4x+5-4x^{2}=0
Subtract 4x^{2} from both sides.
4x+5=0
Combine 4x^{2} and -4x^{2} to get 0.
4x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-5}{4}
Divide both sides by 4.
x=-\frac{5}{4}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}