Solve for x
x = -\frac{11}{10} = -1\frac{1}{10} = -1.1
Graph
Share
Copied to clipboard
4x^{2}+12x+9-\left(1+2x\right)\left(2x-1\right)=x^{2}-\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9-\left(-1+4x^{2}\right)=x^{2}-\left(x-1\right)^{2}
Use the distributive property to multiply 1+2x by 2x-1 and combine like terms.
4x^{2}+12x+9+1-4x^{2}=x^{2}-\left(x-1\right)^{2}
To find the opposite of -1+4x^{2}, find the opposite of each term.
4x^{2}+12x+10-4x^{2}=x^{2}-\left(x-1\right)^{2}
Add 9 and 1 to get 10.
12x+10=x^{2}-\left(x-1\right)^{2}
Combine 4x^{2} and -4x^{2} to get 0.
12x+10=x^{2}-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
12x+10=x^{2}-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
12x+10=2x-1
Combine x^{2} and -x^{2} to get 0.
12x+10-2x=-1
Subtract 2x from both sides.
10x+10=-1
Combine 12x and -2x to get 10x.
10x=-1-10
Subtract 10 from both sides.
10x=-11
Subtract 10 from -1 to get -11.
x=\frac{-11}{10}
Divide both sides by 10.
x=-\frac{11}{10}
Fraction \frac{-11}{10} can be rewritten as -\frac{11}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}